Claim Missing Document
Check
Articles

Found 2 Documents
Search

Investigation of Polymer Flood Performance in Light Oil Reservoir: Laboratory Case Study Dadan DSM Saputra; Bayu D Prasetiyo; Hestuti Eni; Yudha Taufantri; Ghifahri Damara; Yusuf D Rendragraha
Scientific Contributions Oil and Gas Vol. 45 No. 2 (2022): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The use of polymer solutions in the application of chemical EOR injection technology has a role in increasing oil recovery efforts by improving oil mobility in porous media. The addition of the polymer solution is expected to increase the viscosity value of the displacement fluid so that it can form a “piston-like” effect to increase the volumetric sweep efficiency of the light oil reservoir. The polymer used in this study was HPAM using 3 concentrations, namely 500 ppm, 1000 ppm, and 1500 ppm conducted at a temperature of 70 °C. The rheology test of the polymer included concentration vs temperature and shear rate vs viscosity. Thermal stability testing of polymer for 7, 14, 30, 60, and 90 days at 70 °C was done to determine the stability of the polymer solution. Filtration testing was conducted with the criteria of FR <1.2. The static adsorption test has been done with the standard limit of adsorption value <400 µg / gr. Polymer injectivity test using 3 variations of injection rates and coreflooding test were conducted to determine the reduction of Sor in reservoirs due to polymer displacement. From the polymer testing stage, it was found that HPAM polymers at 3 concentrations were compatible with the injection. This is indicated with the clear solution for 3 concentrations at room temperature and 70 °C. The rheology test results showed that the polymer solution with 3 concentrations was decreased in viscosity with the addition of the shear rate value. In the thermal stability test, the viscosity value of the HPAM with 500 ppm was relatively constant. The value of the FR for HPAM 500 ppm is 1.1, HPAM 1000 ppm is 1.07 and HPAM 1500 ppm is 1.03. The results of the static adsorption test showed the lowest HPAM value of 500 ppm was 156 µg/gr. In the injectivity test results, the resistance residual factor (RRF) values at injection rates of 0.3, 0.6, and 1 cc/min were 0.8, 1.04, and 1.12. The RRF value was close to 1, indicating that after injection of 500 ppm of HPAM tended to not experience plugging. Polymer flooding shows the oil recovery factor (RF) of water injection is 39% OOIP, and RF after polymer injection with 0.35 PV with flush water is 13.5% OOIP or 22% Sor. Knowing the behavior of HPAM polymer with various concentrations to be used for chemical EOR injection, it could provide advantages for future implementation in the light oil reservoir in Indonesia.
Parameter Analysis of Polymer on Sandstone Reservoir in Indonesia: An Experimental Laboratory Study Gerry S; Bayu D Prasetiyo; Tomi Erfando
Scientific Contributions Oil and Gas Vol. 45 No. 2 (2022): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Polymers are often used to increase oil recovery by improving sweeping efficiency. The screening was carried out as a first step in evaluating the test parameters of several polymers of the Hydrolyzed Polyacrylamide (HPAM) type in fluid and sandstone reservoir rocks. The test was carried out using a reservoir fluid classified as light oil (35°API) and at a reservoir temperature (60°C). The HPAM polymers used are A1, F1, F2, F3, and P1 polymers. The test parameters carried out on these 5 types of polymer (A1, F1, F2, F3 dan P1) include a compatibility test for formation water. The rheology polymer test includes concentration vs Tres, and shear rate vs viscosity which aims to determine the type of polymer solution being tested is a non-Newtonian or pseudoplastic fluid group. Thermal stability test of polymer for 60 days to determine the stability of the polymer solution and whether it is degraded or stable. Filtration testing with criteria FR value < 1.2, screen factor test, and adsorption testing using the static method with a standard limit of adsorption value < 400 µg/gr and polymer injectivity test. From these tests, scoring (range 0-100) was carried out to determine polymer candidates in polymer flooding testing. The F1 polymer candidate for the sandstone reservoir was obtained with a score of 82.25. From the scoring results, the selected F1 polymer candidate has a concentration value of 2000 ppm. For thermal degradation, the polymer F1 2000 ppm experienced degradation of 15.5%. The results of the F1 2000 ppm polymer static adsorption test were 54.8 µg/gr. With the RRF = 1 value indicating rock permeability after injection of polymer F1 2000 ppm, it tends not to experience plugging due to injection of polymer solution.