Claim Missing Document
Check
Articles

Found 2 Documents
Search

DETEKSI TURBIDITY FRONT MENGGUNAKAN CITRA SATELIT SENTINEL-2 HUBUNGANNYA DENGAN OSEANOGRAFI DI ESTUARI BENGAWAN SOLO Susilo, Setyo Budi; Gaol, Jonson Lumban; Al Hakim, Muhammad Abdul Ghofur
Jurnal Ilmu dan Teknologi Kelautan Tropis Vol. 14 No. 3 (2022): Jurnal Ilmu dan Teknologi Kelautan Tropis
Publisher : Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jitkt.v14i3.40172

Abstract

Estuari merupakan daerah percampuran antara massa air tawar dan air laut yang menyebabkan zat-zat di dasar perairan naik ke permukaan sehingga konsentrasi unsur hara menjadi tinggi. Penelitian mengenai pertemuan massa air estuari masih perlu dilakukan terutama terkait turbidity front estuary karena untuk mengetahui kemampuan citra Setinel-2 dalam mendeteksi turbidity front. Selama ini penelitian ini terbatas dari data in situ, oleh karena itu teknologi penginderaan jauh coba diterapkan untuk mendeteksi turbidity front estuary. Penelitian ini bertujuan untuk mengembangkan algoritma TSS lokal dan mendeteksi turbidity front berdasarkan citra satelit Sentinel-2. Metode penelitian ini menggunakan citra Sentinel-2 untuk mengetahui batas turbidity front berdasarkan TSS yang dibandingan dengan data in situ salinitas dan TSS sebagai validasi data. Hasil penelitian ini diketahui algoritma empiris yang diperoleh dari band ratio (merah/(biru+hijau+merah)) pada Sentinel-2 memiliki hasil yang terbaik dengan koefisien determinasi (R2) = 0,7409. Hasil citra satelit menunjukkan bahwa turbidity front estuary terjadi pada jarak 1,4 – 3 km, sedangkan pada data in situ terjadi pada jarak 2 – 4 km di muara Bengawan Solo. Terdapat perbedaan nilai TSS sebesar 1,9182 mg/L antara data in situ dengan citra satelit di daerah turbidity front estuary. Kondisi musim, curah hujan dan pasang surut memengaruhi konsentrasi dan jarak turbidity front dari muara sungai.
Machine Learning-Based Mapping of Mangrove Forest Changes from Sentinel-2 in Balikpapan Bay, East Kalimantan Al Hakim, Muhammad Abdul Ghofur; Sinurat, Maya Eria Br; Zulkifle, Nurul Ain Najwa; Nurmawati; Mas’ud M, Ahmad Azwar
Jurnal Ilmu dan Teknologi Kelautan Tropis Vol. 17 No. 3 (2025): Jurnal Ilmu dan Teknologi Kelautan Tropis
Publisher : Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jitkt.17.3.67707

Abstract

Balikpapan Bay contains extensive mangrove forests which play an important role as habitat for a range of species and in providing a range of ecosystem services. In recent years, the mangrove forests around Balikpapan Bay are increasingly being lost and degraded due to development pressures. Thus, change detection in mangrove ecosystem has become highly relevant, as it can provide essential information to support the conservation practices and coastal management. This study aims to map mangrove forest change in Balikpapan Bay, East Kalimantan over a five-year period from Sentinel-2 using machine learning. Five machine learning algorithms (Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Tree (CART), K-Nearest Neighbors (KNN), and Minimum Distance), implemented on the Google Earth Engine platform, were evaluated to determine the most suitable method. The evaluation results indicate that RF, SVM, and CART yielded mangrove mapping accuracies of 80% or higher. Notably, the CART algorithm surpassed the other tested models, demonstrating the highest overall accuracy of 84% and a Kappa coefficient of 0.78. Mapping using the selected CART model shows that, between 2020 and 2025, mangrove areas in Balikpapan Bay decreased by 21% (2,906.17 ha). Approximately 97% (2,834.49 ha) of this loss is concentrated in the North Penajam Paser, which has a high rate of land conversion to built-up areas.