Quality of Service (QoS) is a fundamental aspect of modern computer networks, directly influencing performance and user experience. Key parameters such as latency, throughput, packet loss, and jitter play crucial roles in determining network efficiency. Traditional QoS management approaches, often rule-based or heuristic-driven, lack adaptability to dynamic network conditions. This study explores the application of machine learning techniques to predict QoS using historical network data, enabling proactive network optimization. We employ multiple predictive models, including linear regression, random forest, and deep learning, to analyze network performance trends and forecast QoS degradation. Experimental results demonstrate that machine learning significantly enhances prediction accuracy compared to conventional methods, allowing for more effective resource allocation and congestion control. The findings highlight the potential of data-driven approaches in real-time network management, reducing latency fluctuations and improving service reliability. Moreover, deep learning models outperform traditional statistical techniques in recognizing complex patterns within network data, making them a promising solution for next-generation network optimization. The proposed methodology not only improves predictive accuracy but also offers a scalable framework for automated QoS management in cloud computing, IoT, and 5G environments. Future work will focus on refining model generalization across diverse network conditions and integrating federated learning for privacy-preserving QoS predictions. This research underscores the transformative role of machine learning in enhancing network service quality and operational efficiency.