Claim Missing Document
Check
Articles

Found 5 Documents
Search

The Innovative Econometric Approaches for Predicting Myanmar's Central Region as a New Economic Hub Myint, Kyi Zaw; Kyaw, Nyan Myint
International Journal of Multidisciplinary Research of Higher Education Vol 7 No 3 (2024): (July) Theme Education, Sciences, Engineering and Economic
Publisher : Islamic Studies and Development Center in Collaboration With Students' Research Center Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ijmurhica.v7i3.228

Abstract

This quantitative study aims to develop a data-driven framework for optimizing infrastructure investments in Myanmar’s Central Region, identified as a prospective economic hub. Integrating the Cobb-Douglas Production Function, Ridge Regression, and Composite Index Analysis, the framework systematically evaluates four key economic inputs: private capital, labor, transport infrastructure, and public infrastructure and GDP output. Ridge Regression addresses multicollinearity in government budget data, improving stability and reliability of coefficient estimates, while the Composite Index aggregates these inputs into a single metric of economic potential. Findings reveal that the Central Region scores highest, highlighting its readiness to become Myanmar’s next economic hub through strategic infrastructure investments. This robust methodology surpasses traditional models by providing policymakers with a practical tool to reduce regional disparities and prioritize high-impact investments. The study’s implications extend beyond Myanmar, offering a scalable model adaptable for other developing economies facing similar infrastructure and growth challenges.
Stabilization of lateritic soil using cement and lime for road construction Kyaw, Htet Okkar; Kyaw, Nyan Myint
Innovation in Engineering Vol. 2 No. 1 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/ie.v2i1.18

Abstract

In developing countries, crushed rocks are mainly used in road subbase and base courses for road construction. As a result of extremely high fuel prices and lengthy travel times, particularly from Mokepalin, which is 92 miles from Yangon, the exorbitant costs of crushed rock aggregates for road building in Myanmar have therefore become a major concern. Due to energy consumption and carbon emissions, this dependence on remote sources results in increased building costs, project delays, and environmental destruction. In Yangon, local marginal materials (lateritic soil) are also available in Hmawbi, Hlegu, Taikkyi and Twantay townships. According to the engineering properties of soil in term of CBR, Hmawbi lateritic soil is nearly the same as the Mokepalin. Therefore, lateritic soil from Hmawbi was selected as a case study material for this research in order to reduce costs and to be more economical. To evaluate the engineering properties of soil, laboratory tests including sieve analysis, Atterberg limits, UCS, compaction, and CBR testing were carried out. The purpose of this paper is to stabilize lateritic soils for possible use as materials for road sub base and base to substitute crushed rocks. Results showed that 2% of cement and lime content met subbase course for Unconfined Compressive Strength (UCS) values of 0.75 MPa and 1.75 MPa according to Joint Departments of the Army and Air Force and 16% of cement satisfied for road base course for UCS value of 5.36 MPa. The use soil lime mixture was found to be unsuitable for road base course. Cement stabilized lateritic soil proved to be stronger, durable and better than soil lime mixture for road construction.
Experimental study on damping properties of concretes under free vibration with different tyre wastes Win, Cho Zin; Htwe, Khin Su Su; Kyaw, Nyan Myint
Innovation in Engineering Vol. 2 No. 1 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/ie.v2i1.25

Abstract

Disposing of waste tires presents environmental challenges, making recycling into crumb rubber a sustainable solution, especially in developing countries. Moreover, concrete tends to be brittle, and incorporating crumb rubber enhances its energy absorption, which can help reduce the concrete’s brittleness. This study examines the effects of replacing fine aggregates with crumb rubber at 5% and 10% on concrete properties. Two types of crumb rubbers were used namely, low-quality and high-quality crumb rubber treated with CH3COOH solution. Results show that 5% crumb rubber improves compressive strength, and elastic modulus, while these properties decrease at 10% replacement. Free vibration tests using the logarithmic decrement method showed that higher rubber content increases the damping ratio, with 10% replacement yielding the best energy dissipation. Simulation using ANSYS Workbench validated the experimental findings, with natural frequencies and load-displacement behaviors closely matching experimental results. Using 5% crumb rubber enhances compressive strength, damping, and energy absorption, making concrete more versatile. This eco-friendly alternative supports sustainable construction while addressing tire waste disposal, highlighting its potential for dynamic load applications.
Comparative study on energy absorption capacities of normal and rubberized concrete columns under sinusoidal wave Win, Cho Zin; Htwe, Khin Su Su; Kyaw, Nyan Myint
Journal of Engineering Researcher and Lecturer Vol. 4 No. 2 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/jerel.v4i2.183

Abstract

This research explores the use of rubberized concrete composite as an innovative structural material designed to improve energy dissipation and enhance seismic resistance by incorporating recycled rubber crumb into concrete. A reference test model was constructed using normal concrete, while the remaining models were made from concrete in which a portion of the fine aggregates was partially replaced with crumb rubber particles. Lumped mass columns were tested on a shaking table using sine wave excitation to evaluate dynamic behaviour and seismic response with 4 Hz sinusoidal base motion. Acceleration measurements were obtained and analysed in MATLAB using Fast Fourier Transform (FFT), allowing for comparison between normal and rubberized concrete specimens. The results indicated that as the rubber content in the concrete increased, the frequency of the columns decreased under base excitation. Additionally, three-dimensional finite element simulations of lumped mass column models were conducted in ANSYS. Linear dynamic analysis was conducted to assess the system’s behaviour when subjected to harmonic loading. In addition, resonance conditions were also considered to assess the dynamic interaction of the column. With higher rubber content, the acceleration response is reduced due to the enhanced damping and energy absorption capabilities of rubberized concrete, leading to a significant decrease in peak acceleration values.
Comparative study on energy absorption capacities of normal and rubberized concrete columns under sinusoidal wave Win, Cho Zin; Htwe, Khin Su Su; Kyaw, Nyan Myint
Journal of Engineering Researcher and Lecturer Vol. 4 No. 2 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/jerel.v4i2.183

Abstract

This research explores the use of rubberized concrete composite as an innovative structural material designed to improve energy dissipation and enhance seismic resistance by incorporating recycled rubber crumb into concrete. A reference test model was constructed using normal concrete, while the remaining models were made from concrete in which a portion of the fine aggregates was partially replaced with crumb rubber particles. Lumped mass columns were tested on a shaking table using sine wave excitation to evaluate dynamic behaviour and seismic response with 4 Hz sinusoidal base motion. Acceleration measurements were obtained and analysed in MATLAB using Fast Fourier Transform (FFT), allowing for comparison between normal and rubberized concrete specimens. The results indicated that as the rubber content in the concrete increased, the frequency of the columns decreased under base excitation. Additionally, three-dimensional finite element simulations of lumped mass column models were conducted in ANSYS. Linear dynamic analysis was conducted to assess the system’s behaviour when subjected to harmonic loading. In addition, resonance conditions were also considered to assess the dynamic interaction of the column. With higher rubber content, the acceleration response is reduced due to the enhanced damping and energy absorption capabilities of rubberized concrete, leading to a significant decrease in peak acceleration values.