Widya, Herma
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Identifying Student Misconceptions Using Three-Tier Test with Certainty of Response Index on Temperature and Heat Topics Oktavia, Popy; Suhadi, Suhadi; Widya, Herma; Putri, Jamiatul Khairunnisa; Mabruroh, Faizatul
KONSTAN - JURNAL FISIKA DAN PENDIDIKAN FISIKA Vol 9 No 02 (2024): KONSTAN (Jurnal Fisika dan Pendidikan Fisika)
Publisher : Universitas Islam Negeri (UIN) Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20414/konstan.v9i02.553

Abstract

This research aims to identify students' misconceptions using a Three-Tier diagnostic test assisted by the Certainty of Response Index (CRI) on temperature and heat material. The data analysis method used in this research is quantitative descriptive and equipped with a three-tier Certainty of Response Index (CRI). The population in this study was class XI 1 IPA MAN 1 Musi Banyuasin with 30 students, and the sample in this study was class. Data collection techniques were used during the observation, test, and documentation stages. The research results showed that the misconceptions identified regarding the concept of temperature and heat were 40%, 36% understood the concept, 6% understood the concept but needed clarification and 18% needed to learn the concept. The misconceptions experienced by students are classified as moderate-level misconceptions with a percentage range of 31% ≥ 60%. The cause of misconceptions is the students' errors in learning context and incomplete reasoning. It is hoped that the results of this research can provide information about misconceptions that occur in the matter of temperature and heat and can serve as a guide for further research to find out the causes of misconceptions and efforts to overcome them.
Pengembangan Buku Panduan Praktikum Fisika Berbasis Problem Solving pada Materi Listrik Statis Wulandari, Vira; Hartatiana, Hartatiana; Widya, Herma
Jurnal Pendidikan dan Ilmu Fisika Vol 3 No 2 (2023): December 2023
Publisher : Universitas Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52434/jpif.v3i2.2684

Abstract

Penelitian ini bertujuan untuk menghasilkan bahan ajar berupa buku panduan praktikum berbasis problem solving pada materi listrik statis yang valid dan praktis. Penelitian ini dilakukan di SMA Negeri 6 Palembang pada semester genap tahun ajaran 2022/2023 dengan subjek penelitian yaitu peserta didik kelas XII IPA. Penelitian ini menggunakan model pembelajaran problem solving dengan metode penelitian Research and Development (R&D)  model Borg & Gall. Teknik pengumpulan data yang digunakan berupa observasi, wawancara, angket, dan dokumentasi. Instrumen yang digunakan pada pengumpulan data yaitu angket yang diberikan kepada ahli materi, ahli media, ahli bahasa dan responden yang bertujuan untuk menguji divalidasi dan kepraktisan dari bahan ajar yang telah dikembangkan. Hasil penelitian ini yaitu telah dikembangkan buku panduan praktikum berbasis problem solving pada materi listrik statis yang telah divalidasi oleh para validator. Hasil validasi ahli materi sebesar 88%, ahli media sebesar 96%, dan ahli bahasa sebesar 98% dengan kategori sangat valid. Hasil uji coba lapangan diperoleh persentase respons peserta didik sebesar 89% dan respons pendidik sebesar 89% dengan kategori sangat praktis. Berdasarkan hasil penelitian dapat disimpulkan bahwa bahan ajar berbasis problem solving pada materi listrik statis yang telah dikembangkan sangat valid dan sangat praktis serta dapat digunakan dalam proses pembelajaran.
Penerapan Algoritma Machine Learning dalam Analisis Pola Kesalahan Konseptual Siswa pada Pembelajaran Sains Diningrat, Mohammad Santosa Mulyo; Mabruroh, Faizatul; Widya, Herma; Nurhamidah, Nurhamidah
Jurnal Pendidikan dan Ilmu Fisika Vol 5 No 1 (2025): Juni 2025
Publisher : Universitas Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52434/jpif.v5i1.42586

Abstract

Science education often faces challenges related to conceptual errors made by students, which can hinder their understanding of the material being taught. This study aims to identify and analyze common conceptual errors through the application of machine learning algorithms. The method employed in this research is a literature review approach, where various relevant studies are analyzed to understand the application of machine learning in the context of science education. The findings of the study indicate that several machine learning algorithms, such as large language models and interactive visualization techniques, can be utilized to detect misconceptions in students with higher accuracy and provide more personalized feedback. Although there are some challenges related to the accuracy and reliability of the systems used, the application of these techniques shows significant potential in enhancing the effectiveness of science education. Overall, the application of machine learning in science education can make a substantial contribution to helping teachers analyze and correct the conceptual errors made by students, ultimately improving the quality of the learning process. The implications of this research suggest the need for further development to create technology-based education systems that can better respond to students' learning needs.