Claim Missing Document
Check
Articles

Found 3 Documents
Search

Formulasi Penempatan Sensor Suhu Pada Green House Hermawan, Rudi; Adhy, Dewanto Rosian; Maesaroh, Siti; Anggara, Mohamad Bayu; Mauhib, Akpil; Rosada, Nyataku Ibnu; Suhendar, Asep; Noor, Yudin Wahyudin
Power Elektronik : Jurnal Orang Elektro Vol 13, No 3 (2024): POWER ELEKTRONIK
Publisher : Politeknik Harapan Bersama Tegal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/polektro.v13i3.7711

Abstract

The application of Internet of Things (IoT) technology is currently increasingly widespread in various aspects of human life, both in agriculture, animal husbandry, education, and in various industries or other institutions. However, the problem that is often encountered is that the application of IoT technology is only limited to function without considering the effectiveness and efficiency of the sensors used in the technology. This also applies to the IoT-based system in the Greenhouse, one of the products developed by the Informatics Engineering Study Program, Mayasari Bakti University. Temperature plays an important role in the process of cultivating plants in a greenhouse, so the sensor must be calibrated accurately according to the size of the greenhouse. Often, the temperature sensor used in the greenhouse cannot reach the entire area so that anomalies occur in temperature monitoring which will ultimately affect the quality of the harvest.In this study, the temperature sensor is the main focus in the development of a large-scale greenhouse control system. This study uses an experimental research method that focuses on determining the causal relationship between the main object and related factors. The study was conducted in a greenhouse with an area of 5 x 6 meters. The results showed that the DHT22 sensor was more effective than the LM35 and DHT11 sensors. For comprehensive temperature monitoring in this greenhouse, 12 DHT22 sensors are required arranged in 4 rows and 3 columns for optimal coverage.
Sistem Monitoring Keamanan Pada Green House Adhy, Dewanto Rosian; Hermawan, Rudi; Fauzi, Ahmad Miftah; Maesaroh, Siti; Mauhib, Akpil; Rosada, Nyataku Ibnu; Suhendar, Asep; Noor, Yudin Wahyudin
Power Elektronik : Jurnal Orang Elektro Vol 13, No 3 (2024): POWER ELEKTRONIK
Publisher : Politeknik Harapan Bersama Tegal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/polektro.v13i3.7721

Abstract

This study aims to develop a security monitoring system for greenhouses using Internet of Things (IoT) technology. The system utilizes motion sensors to monitor activity, with the ESP32 Cam module implemented within the greenhouse. Data from the ESP32 Cam is processed using object detection algorithms to identify and track any objects entering the greenhouse.In the development of the moving object detection system, several approaches have been explored by previous researchers. One such approach involves the use of cameras to detect and track moving objects on UAVs using the segmentation method with edge-based dilation. Another study implemented a surveillance system using a webcam to detect motion and trigger an alarm to enhance security measures.This research leverages existing technologies in the areas of workflow and object recognition algorithms. These technologies are implemented in a relatively simple system capable of executing established algorithms. The primary objective is to focus on implementation that can enhance the Technology Readiness Level (TRL). The study successfully produced a security monitoring system that improves greenhouse security and assists in monitoring activities within the greenhouse. The system uses PIR (motion) sensors configured to trigger image capture by the camera and notify the ESP32 to send alerts via Telegram.
Perbandingan Algoritma Klasifikasi untuk Rekomendasi Tanaman Berdasarkan Data Lingkungan Fauzi, Willy Muhammad; Ramdana, Adi Dadan; Firmansyah, Fajar; Nugraha, Fajar Yudha; Mauhib, Akpil
Power Elektronik : Jurnal Orang Elektro Vol 14, No 1 (2025): POWER ELEKTRONIK
Publisher : Politeknik Harapan Bersama Tegal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/polektro.v14i1.8682

Abstract

Pemilihan tanaman yang tepat sangat penting dalam meningkatkan produktivitas pertanian. Dengan adanya teknologi machine learning, proses rekomendasi tanaman berdasarkan data lingkungan dapat lebih efisien, terutama dalam menghadapi kondisi iklim yang bervariasi. Penelitian ini bertujuan untuk membandingkan tiga algoritma klasifikasi, yaitu Random Forest, XGBoost, dan SVM, dalam memberikan rekomendasi tanaman yang sesuai berdasarkan data lingkungan yang mencakup suhu, kelembaban, pH tanah, dan curah hujan. Penelitian ini menggunakan dataset yang mencakup fitur lingkungan dari BPS Kota Tasikmalaya, yang kemudian diuji dengan tiga algoritma klasifikasi machine learning Random Forest, XGBoost, dan SVM. Setiap model dievaluasi berdasarkan akurasi, precision, recall, dan F1-score. Random Forest menunjukkan hasil terbaik dengan akurasi 99.32%, diikuti oleh XGBoost dengan akurasi 98.64%, dan SVM dengan akurasi 96.82%. Model-model ini memberikan rekomendasi tanaman seperti jeruk dan melon, sementara SVM lebih sering merekomendasikan mothbeans. Random Forest memberikan hasil yang paling optimal dalam sistem rekomendasi tanaman berbasis data lingkungan, meskipun SVM lebih cepat dalam hal pelatihan model. Penelitian ini menunjukkan pentingnya penerapan algoritma machine learning untuk mendukung keputusan pertanian berbasis kondisi lingkungan lokal.