p-Index From 2020 - 2025
0.408
P-Index
This Author published in this journals
All Journal Rekayasa Mesin
Fasya, M. Haykal
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

EXPERIMENTAL STUDY OF COOLING FLUID VARIATION ON THE THERMOELECTRIC HOT SIDE ON THERMOELECTRIC VACCINE COOLER BOX PERFORMANCE Pratama, Novreza; Rosyadi, Imron; Wahyudi, Hadi; Fasya, M. Haykal
Jurnal Rekayasa Mesin Vol. 15 No. 3 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i3.1850

Abstract

The advanced countries make health a high priority and collaborate to create a better quality of life. Vaccination is a critical component of global health. Vaccines must be stored at a constant temperature of 2-8℃, to maintain the viability of the vaccine cold chain. Thermoelectric cooling systems (TECs) are a solution that is simple, lightweight, low cost, and portable. Excessively high hot-side temperatures can be detrimental to operators and the environment during distribution processes. The application of fans and circulating fluid can reduce the TEC hot-side temperature. The lowest TEC temperature difference of 30.26℃ is achieved by using only a fan. The minimum hot side of 31.28℃ is achieved with the fan and circulating water model. The minimum cold side can be increased to 0.53℃ with the fan and circulating radiator coolant model. All tests were at vaccine-eligible temperatures. The best COP of 0.14 can be reached in this study.
EXPERIMENTAL STUDY OF COOLING FLUID VARIATION ON THE THERMOELECTRIC HOT SIDE ON THERMOELECTRIC VACCINE COOLER BOX PERFORMANCE Pratama, Novreza; Rosyadi, Imron; Wahyudi, Hadi; Fasya, M. Haykal
Jurnal Rekayasa Mesin Vol. 15 No. 3 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i3.1850

Abstract

The advanced countries make health a high priority and collaborate to create a better quality of life. Vaccination is a critical component of global health. Vaccines must be stored at a constant temperature of 2-8℃, to maintain the viability of the vaccine cold chain. Thermoelectric cooling systems (TECs) are a solution that is simple, lightweight, low cost, and portable. Excessively high hot-side temperatures can be detrimental to operators and the environment during distribution processes. The application of fans and circulating fluid can reduce the TEC hot-side temperature. The lowest TEC temperature difference of 30.26℃ is achieved by using only a fan. The minimum hot side of 31.28℃ is achieved with the fan and circulating water model. The minimum cold side can be increased to 0.53℃ with the fan and circulating radiator coolant model. All tests were at vaccine-eligible temperatures. The best COP of 0.14 can be reached in this study.