Customer segmentation is a very important marketing concept in the context of relationship marketing that can improve understanding of customer needs to create a more effective and personalized marketing strategy. Therefore, an appropriate analysis is needed to determine customer segmentation according to the existing characteristics. In this research, three classification algorithms are used to identify hidden patterns and automatically segment customers: Random Forest, Support Vector Machine (SVM), and Gradient Boosting. The results show that customer segmentation successfully divides consumers into four different groups: A, B, C, and D, each with unique characteristics. The Gradient Boosting model has the best performance in cross-validation with 54% accuracy, although all models show a decrease in accuracy on test data. The customer segmentation results in this study can provide valuable insights for automotive companies to design more targeted and effective marketing strategies to increase profitability.Abstrak (Indonesia):Segmentasi pelanggan merupakan konsep pemasaran yang sangat penting dalam konteks relationship marketing yang dapat meningkatkan pemahaman tentang kebutuhan pelanggan yang lebih baik untuk menciptakan strategi pemasaran yang lebih efektif dan personal. Oleh karena itu dibutuhkan analisis yang tepat sesuai karakteristik yang ada untuk menentukan segmentasi pelanggan tersebut. Pada penelitian ini, untuk mengidentifikasi pola tersembunyi dan secara otomatis mengelompokkan pelanggan digunakan tiga algoritma klasifikasi yaitu Random Forest, Support Vector Machine (SVM), dan Gradient Boosting. Hasilnya menunjukkan bahwa segmentasi pelanggan berhasil membagi konsumen ke dalam empat kelompok yang berbeda: A, B, C, dan D, masing-masing dengan karakteristik yang unik. Model Gradient Boosting memiliki kinerja terbaik dalam validasi silang dengan akurasi 54%, meskipun semua model menunjukkan penurunan akurasi pada data uji. Hasil segmentasi pelanggan pada penelitian ini dapat memberikan wawasan yang berharga bagi perusahaan otomotif untuk merancang strategi pemasaran yang lebih tepat sasaran dan efektif untuk meningkatkan profitabilitas.