Feng, Zhipeng
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Weather Prediction for Strawberry Cultivation Using Double Exponential Smoothing and Golden Section Optimization Methods Herlinah, Herlinah; Asrul, Billy Eden William; HS, Hafsah; Faisal, Muhammad; Lee, Swa Lee; Gani, Hamdan; Feng, Zhipeng
ILKOM Jurnal Ilmiah Vol 16, No 3 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i3.2290.305-317

Abstract

Strawberry is one of the fruit commodities that has a high demand so that it is widely cultivated by most people in Bantaeng Regency to meet with the market needs. The high intensity of weather changes is the main challenge in the strawberry production, which is influenced by climate dynamics and the start season time changes. Climate change does not only affect the amount of rainfall, but also causes a shift in the rainy season and dry season start. As a result, in the cultivation of plants such as strawberries, there are often difficulties in adjusting or slow anticipation in the extreme changes of rainfall. This research began with the data collection stage through field observations, interviews, and literature studies. The design tool used a systematically organized UML, which included a use case diagram, then an activity diagram, as well as an elaboration into sequence diagrams, and class diagrams. The system was developed by implementing the PHP programming language on the interface design as well as MySQL as a database processing. The algorithm used to predict the air temperature feature, wind speed feature, and rainfall feature was Double Exponential Smoothing, followed by the optimization of the Golden Section method to select the right smoothing value. Referring to the results of this study, the system can provide planting time recommendations based on prediction of rainfall, air temperature, and wind speed parameters through a web-based platform. Based on the calculation of the accuracy value of the prediction results using the Mean Absolute Percentage Error (MAPE), the obtained forecast error value was of 5.89% for wind speed, 0.63% for air temperature, and 0.69% for rainfall. The Golden Section Optimization in Double Exponential Smoothing provided the best smoothing for prediction.
EVALUATION OF INDOBERT AND ROBERTA: PERFORMANCE OF INDONESIAN LANGUAGE TRANSFORMER MODELS IN SENTIMENT CLASSIFICATION Nur, M. Adnan; Umar, Najirah; Feng, Zhipeng; Gani, Hamdan
JIKO (Jurnal Informatika dan Komputer) Vol 8, No 2 (2025)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v8i2.9988

Abstract

The development of Natural Language Processing (NLP) technology has had a significant impact on various fields, especially in sentiment analysis. This analysis becomes important in understanding public perception, especially on social media which has a lot of opinions. Indonesian, with its morphological complexity, dialectal variations, and dynamic everyday vocabulary usage, presents unique challenges in the development of NLP models. This study aims to evaluate and compare the performance of two Indonesian language transformer models, namely IndoBERT (Indonesia Bidirectional Encoder Representations from Transformers) and RoBERTa Indonesia (Robustly Optimized BERT Pretraining Approach) in applying sentiment classification using the Indonesian General Sentiment Analysis Dataset. Both models were fine-tuned using consistent hyperparameter configurations to ensure the validity of the comparison. Evaluation was conducted based on classification metrics, namely precision, recall, F1-score, and accuracy. The results show that the IndoBERT model excels in all aspects of evaluation. IndoBERT achieved an accuracy of 70%, while RoBERTa Indonesia only reached 67%. Additionally, the average F1-score of IndoBERT at 0.69 is higher compared to RoBERTa, which only reached 0.65. The performance of IndoBERT is also more balanced in classifying the three sentiment categories (negative, neutral, and positive), whereas RoBERTa shows less consistent performance, especially in negative and positive sentiments. In the loss analysis, IndoBERT produced a lower evaluation loss value, indicating better generalization capability. Additionally, IndoBERT also shows faster and more stable training times compared to RoBERTa. This performance difference shows that the architecture and pre-trained data used by each model affect their ability to understand Indonesian contextually. This research provides a comprehensive comparative overview of the effectiveness of two transformer models in the task of Indonesian language sentiment analysis, as well as lays the groundwork for selecting a more optimal model in the development of NLP systems for social media.