Akbari, Ade Kurnia Ganesh
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhanced Multivariate Time Series Analysis Using LSTM: A Comparative Study of Min-Max and Z-Score Normalization Techniques Pranolo, Andri; Setyaputri, Faradini Usha; Paramarta, Andien Khansa’a Iffat; Triono, Alfiansyah Putra Pertama; Fadhilla, Akhmad Fanny; Akbari, Ade Kurnia Ganesh; Utama, Agung Bella Putra; Wibawa, Aji Prasetya; Uriu, Wako
ILKOM Jurnal Ilmiah Vol 16, No 2 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i2.2333.210-220

Abstract

The primary objective of this study is to analyze multivariate time series data by employing the Long Short-Term Memory (LSTM) model. Deep learning models often face issues when dealing with multivariate time series data, which is defined by several variables that have diverse value ranges. These challenges arise owing to the potential biases present in the data. In order to tackle this issue, it is crucial to employ normalization techniques such as min-max and z-score to guarantee that the qualities are standardized and can be compared effectively. This study assesses the effectiveness of the LSTM model by applying two normalizing techniques in five distinct attribute selection scenarios. The aim of this study is to ascertain the normalization strategy that produces the most precise outcomes when employed in the LSTM model for the analysis of multivariate time series. The evaluation measures employed in this study comprise Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and R-Squared (R2). The results suggest that the min-max normalization method regularly yields superior outcomes in comparison to the z-score method. Min-max normalization specifically resulted in a decreased mean absolute percentage error (MAPE) and root mean square error (RMSE), as well as an increased R-squared (R2) value. These improvements indicate enhanced accuracy and performance of the model. This paper makes a significant contribution by doing a thorough comparison analysis of normalizing procedures. It offers vital insights for researchers and practitioners in choosing suitable preprocessing strategies to improve the performance of deep learning models. The study's findings underscore the importance of selecting the appropriate normalization strategy to enhance the precision and dependability of multivariate time series predictions using LSTM models. To summarize, the results indicate that min-max normalization is superior to z-score normalization for this particular use case. This provides a useful suggestion for further studies and practical applications in the field. This study emphasizes the significance of normalization in analyzing multivariate time series and contributes to the larger comprehension of data preprocessing in deep learning models
Deep Learning Approaches with Optimum Alpha for Energy Usage Forecasting Wibawa, Aji Prasetya; Utama, Agung Bella Putra; Akbari, Ade Kurnia Ganesh; Fadhilla, Akhmad Fanny; Triono, Alfiansyah Putra Pertama; Paramarta, Andien Khansa’a Iffat; Setyaputri, Faradini Usha; Hernandez, Leonel
Knowledge Engineering and Data Science Vol 6, No 2 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v6i22023p170-187

Abstract

Energy use is an essential aspect of many human activities, from individual to industrial scale. However, increasing global energy demand and the challenges posed by environmental change make understanding energy use patterns crucial. Accurate predictions of future energy consumption can greatly influence decision-making, supply-demand stability and energy efficiency. Energy use data often exhibits time-series patterns, which creates complexity in forecasting. To address this complexity, this research utilizes Deep Learning (DL), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU) models. The main objective is to improve the accuracy of energy usage forecasting by optimizing the alpha value in exponential smoothing, thereby improving forecasting accuracy. The results showed that all DL methods experienced improved accuracy when using optimum alpha. LSTM has the most optimal MAPE, RMSE, and R2 values compared to other methods. This research promotes energy management, decision-making, and efficiency by providing an innovative framework for accurate forecasting of energy use, thus contributing to a sustainable and efficient energy system.