Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGARUH PENDIDIKAN, PENGALAMAN, UMUR, DAN JAM KERJA TERHADAP PENDAPATAN BULANAN KARYAWAN MENGGUNAKAN MODEL REGRESI LINEAR BERGANDA Sianturi, Michael D; L.Tobing, Imelda Octavia; K, Fachriz Effendy.; Maulana, Bintang; Sinaga, Gizka Triyunita; Sitorus, Yolanda Angelina
Trigonometri: Jurnal Matematika dan Ilmu Pengetahuan Alam Vol. 5 No. 1 (2024): Trigonometri: Jurnal Matematika dan Ilmu Pengetahuan Alam
Publisher : Cahaya Ilmu Bangsa Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.3483/trigonometri.v5i1.7533

Abstract

Penelitian ini menganalisis pengaruh tingkat pendidikan, pengalaman kerja, umur, jenis kelamin, dan jumlah jam kerja terhadap pendapatan bulanan karyawan menggunakan model regresi linier berganda. Data dikumpulkan dari karyawan PT. Nubika Jaya Labuhan Batu Selatan. Hasil analisis menunjukkan bahwa umur dan jumlah jam kerja memiliki pengaruh positif signifikan terhadap pendapatan, sedangkan tingkat pendidikan dan pengalaman kerja menunjukkan pengaruh negatif. Model yang digunakan telah melalui uji asumsi klasik, termasuk uji normalitas, multikolinearitas, dan autokorelasi, dengan hasil bahwa asumsi terpenuhi. Dengan nilai Adjusted R-squared sebesar 30,69%, penelitian ini berhasil menjelaskan sebagian variasi pendapatan karyawan berdasarkan variabel independen yang digunakan. Temuan ini memberikan wawasan penting untuk pengembangan kebijakan ketenagakerjaan dan perencanaan karier individu. Kata Kunci: Pendapatan Karyawan, Regresi Linier Berganda
Application of Lagrange Interpolation Method in Predicting the Number of HVS Orders in Printing Triana, Dinie; Putri, Amelia; Faradhilah, Anatasia; Sitorus, Yolanda Angelina
Holistic Science Vol. 4 No. 3 (2024): Jurnal Nasional Holistic Science
Publisher : Lembaga Riset Mutiara Akbar NOMOR AHU-0003295.AH.01.07 TAHUN 2021

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56495/hs.v4i3.791

Abstract

The research entitled “Application of the Lagrange Interpolation Method in Predicting the Number of HVS Orders in Printing” aims to develop an accurate forecasting model for the number of HVS orders in the printing industry. In this study, the Lagrange interpolation method was chosen because it can provide estimates by considering limited historical data. The analyzed data ranges from January 2021 to November 2022 and is processed to build a forecasting model. The results showed that the interpolation model built was able to capture well the fluctuation pattern of the order quantity. Model evaluation is carried out using Mean Absolute Percentage Error, which reads <=10%, indicating high prediction accuracy. In addition, sensitivity analysis to data variations showed consistent results of the prediction, thus strengthening the validity of the method. These findings suggest that Lagrange interpolation is an effective tool in forecasting HVS demand, providing advantages in inventory management and production planning in printing houses.