Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analysis of Pyrolytic Product Distribution for B3 and Non-B3 Medical Waste Pyrolysis Rezeki, Tri Nur; Ridwan, Abrar; Meka, Wahyu; Fitri, Yulia; Mahendra, Rain Agri; Hamzah, Munawir; Widara, Laras Sita; Athala, Azzalya Putri
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.14134.101-110

Abstract

The coronavirus disease (COVID-19) has badly impacted many sectors, particularly medical waste generation in healthcare facilities. The increasing amount of medical waste poses a serious threat to health and environmental sustainability. Traditional waste processing (burning) cannot be used for B3 medical waste and is often mixed with non-B3 medical waste. This is because it potentially generates dangerous chemicals emitted into the atmosphere. Meanwhile, pyrolysis as a superior thermochemical technology is an effective solution for treating both B3 medical waste and non-B3 medical waste. The waste used in this study has good characteristics, as indicated by the low water and high fixed carbon content. The pyrolysis process yields products with economic value, such as solid, liquid, and gas products. Therefore, this study aims to determine the levels of products that can be produced from B3 and non-B3 medical waste. The results showed that rubber bands produce the highest proportion of liquid products at 44%, the highest solid products were obtained from LDPE plastic waste with a proportion of 65%, while the highest gas product was produced by mask waste at 45%. Based on the results, waste with high product yields can be used as an alternative energy source, such as gasoline, LPG, briquettes, and battery-based materials.
Pyrolytic Product Distribution Analysis on Co-Pyrolysis of Face Mask Waste and Lignocellulosic Waste Mahendra, Rain Agri
METAL: Jurnal Sistem Mekanik dan Termal Vol. 7 No. 2 (2023): Jurnal Sistem Mekanik dan Termal (METAL)
Publisher : Department of Mechanical Engineering, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/metal.7.2.%p.2023

Abstract

COVID-19 causes a large increase in medical and non-medical waste in the world, especially in developing countries. Improper waste management causes significant health problems and impacts on the environment. Pyrolysis is a process that utilizes thermal instability of organic components in waste to convert them into liquid (oil), solid (charcoal), gas and wax products that have potential as fuels. Co-pyrolysis of medical face masks as infectious medical waste with non-infectious medical waste such as food waste, garden waste and paper were investigated for energy valorization. Particles, temperature, nitrogen flow rate and waste characterization affected the resulting product. Pyrolysis was carried out at 400 °C with nitrogen (N2) flow rate of 0.5 L/min. Co-pyrolysis of face masks and food waste produced oil with the highest yield because food waste contains dominant amount of cellulose and hemicellulose promoting high oil yield. This pyrolysis method is considered a simple, clean, safe and effective technique to reduce the amount of waste during a global pandemic.