Claim Missing Document
Check
Articles

Found 2 Documents
Search

KLASIFIKASI TINGKAT PENGANGGURAN TERBUKA DI PULAU JAWA MENGGUNAKAN REGRESI LOGISTIK ORDINAL Indah, Yunna Mentari; Fitrianto, Anwar; Erfiani, Erfiani; Indahwati, Indahwati; Aliu, Muftih Alwi
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 2 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i2.629

Abstract

Unemployment is one of the indicators for measuring the economic conditions of a region. It is also a social and economic problem in many countries, including Indonesia, especially in areas with a density of economic activity, such as Java Island. The purpose of this study was to classify and analyze the factors that affect the open unemployment rate in cities and regions on Java Island, which are categorized as low, medium, and high. The research method used in this study was ordinal logistic regression analysis. The data source comes from the BPS website in 2023 with four predictor variables: population size, labor force participation rate, average years of schooling, and gross regional domestic product at constant prices. The research results show that the variables population size and labor force participation rate had a significant effect on the open unemployment rate, while the variables average years of schooling and gross regional domestic product at constant prices did not have a significant effect on the open unemployment rate with the accuracy of the ordinal logistic model is 77.27%.
Comparison of Random Forest, XGBoost, and LightGBM Methods for the Human Development Index Classification Indah, Yunna Mentari; Aristawidya, Rafika; Fitrianto, Anwar; Erfiani, Erfiani; Jumansyah, L.M. Risman Dwi
Jambura Journal of Mathematics Vol 7, No 1: February 2025
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjom.v7i1.28290

Abstract

Machine learning classification is an effective tool for categorizing data based on patterns, which is particularly useful in analyzing the Human Development Index (HDI) in Indonesia. HDI serves as a key indicator of regional development progress, making it crucial to classify HDI categories at the regency/city level to support targeted development planning. This study aims to compare the performance of three ensemble-based classification methods—Random Forest, XGBoost, and LightGBM—in classifying HDI categories in Indonesia. Data from the Central Bureau of Statistics (BPS) in 2023, comprising 514 observations across nine variables, was used for analysis. The study applied these algorithms to analyze the most influential variables affecting HDI. The results show that LightGBM outperformed both Random Forest and XGBoost, achieving an accuracy of 0.937 without outlier handling and 0.944 with outlier handling. Additionally, per capita expenditure was identified as the most influential factor in predicting HDI. These findings contribute to the field of statistical modeling by demonstrating how ensemble methods can improve classification accuracy and provide valuable insights for data-driven policymaking, thus enhancing regional development planning and supporting future HDI-related research.