Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Analisis Diskriminan Kuadratik dengan Analisis Diskriminan Kuadratik Robust martha, Ully Martha; Dodi Vionanda; Dony Permana; Zilrahmi
UNP Journal of Statistics and Data Science Vol. 2 No. 4 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss4/315

Abstract

This study compared the performance of quadratic discrimination analysis and robust quadratic discrimination analysis using the Iris dataset from Kaggle. The robust quadratic discriminant analysis, designed to handle outliers and non-normal distributions, shows better performance with an Apparent Error Rate (APER) of 2.5%. In contrast, the quadratic discriminant analysis, used for data with multivariate normal distribution and different variance-covariance matrices among groups, yields an APER of 3.03%. These results indicate that robust quadratic discriminant analysis is more accurate in classification on this dataset compared to quadratic discriminant analysis. Keywords: Apparent Error Rate, Quadratic Discrimination Analysis, Robust Quadratic Discrimination Analysis