Claim Missing Document
Check
Articles

Found 4 Documents
Search

Design, Modeling, and Simulation of A New Adaptive Backstepping Controller for Permanent Magnet Linear Synchronous Motor: A Comparative Analysis Maamar, Yahiaoui; Elzein, I. M.; Alnami, Hashim; Brahim, Brahimi; Benameur, Afif; Mohamed, Horch; Mahmoud, Mohamed Metwally
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1425

Abstract

In this paper, a nonlinear adaptive position controller for a permanent magnet linear synchronous motor based on a newly developed adaptive backstepping control approach is discussed and analyzed. The backstepping approach is a systematic method; it is used for non-linear systems such as the linear synchronous motor. This controller combines the notion of the Lyapunov function, which is based on the definition of a positive energy function; to ensure stability in the sense of Lyapunov, it is necessary to ensure the negativity of this function by a judicious choice of a control variable called virtual control. But this method is mainly based on the mathematical model of the permanent magnet linear synchronous machine (PMLSM) which makes this control sensitive to the variation of the parameters of the machine, to overcome this problem an adaptive control was proposed, the adaptive backstepping control approach is utilized to obtain the robustness for mismatched parameter uncertainties and disturbance load force. The overall stability of the system controller and adaptive low is shown using the Lyapunov theorem. The validity of the proposed controller is supported by computer simulation results.
Hybrid Adaptive Backstepping Sliding Mode Controller of Permanent Magnet Linear Synchronous Motors Maamar, Yahiaoui; Alnami, Hashim; Elzein, I. M.; Benameur, Afif; Brahim, Brahimi; Mohamed, Horch; Mahmoud, Mohamed Metwally
Control Systems and Optimization Letters Vol 2, No 3 (2024)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v2i3.165

Abstract

This paper tackles the tracking position control dilemma of permanent magnet linear synchronous motors with parameter uncertainties and load force disturbance. Adaptive nonlinear backstepping control augmented with sliding mode control (SMC) is proposed to solve the problem of load force distribution. The backstepping is a recursive control technique where its stability is ensured at each step. However, its sensitivity to uncertainties, disturbances, and electromagnetic noise leads to unwanted performances. SMC is a well-known nonlinear robust approach for uncertain dynamical systems and reduces its parametric adaptive laws.  However, implementing this technique in real-time applications is stopped by its main shortcoming, the undesirable chattering phenomenon.  The saturation function is used to reduce the chattering phenomenon.  The incorporation of these approaches is a promising solution to provide a suitable position tracking of PMLSM in the presence of parameter uncertainties and load force disturbance. The simulation tests have been performed on the PMLSM system to prove the effectiveness and robustness of the proposed controller law.  The results highlighted satisfactory position tracking performance in transient conditions and steady-state and under different load force disturbances.
The Utilization of a TSR-MPPT-Based Backstepping Controller and Speed Estimator Across Varying Intensities of Wind Speed Turbulence Elzein, I. M.; Maamar, Yahiaoui; Mahmoud, Mohamed Metwally; Mosaad, Mohamed I.; Shaaban, Salma Abdelaal
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1793

Abstract

Because wind systems are so prevalent in the electrical grid, an innovative control method can significantly increase the productivity of permanent magnet synchronous generators (PMSG). A wind power generation system's maximal power point (MPP) tracking control approach is presented in this paper. The nonlinear backstepping controller, which is robust to parameter uncertainty, is used in this work to enhance the tip speed ratio approach.  To lower the system's equipment and maintenance costs, we suggested utilizing a speed estimator. As a novel addition to the backstepping controller development, the suggested estimator is a component of the backstepping controller development. The control and system organization approaches are presented. Lyapunov analysis is used to guarantee the stability of the controller. To assess the suggested approach, step change and varying wind speed turbulence intensities are employed. The results expose the great efficiency of the proposed method in both tracking MPP and calculating generator speed.  The proposed control strategy and structure are validated by MATLAB simulations.
A Comparative Analysis of Recent MPPT Algorithms (P&O\INC\FLC) for PV Systems Maamar, Yahiaoui; Elzein, I. M.; Benameur, Afif; Mohamed, Horch; Mahmoud, Mohamed Metwally; Mosaad, Mohamed I.; Shaaban, Salma Abdelaal
Journal of Robotics and Control (JRC) Vol. 6 No. 4 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i4.25814

Abstract

Although solar (PV) power generators have been widely deployed, one important barrier to their effective energy capture is weather variability. It is a very challenging effort for these systems to operate at MPPT. Conventional MPPT methods still had an excessively long convergence period to the MPP. Because of their superior data processing, intelligent approaches are nevertheless given a reasonable length of time to reach the maximum point, beginning with the objective of keeping the PV generator in the MPP with outstanding performance. To accomplish MPPT, a comparison between intelligent (fuzzy control (FLC)) and conventional algorithms (perturb-and-observe (P&O) and the incremental conductance (INC)) is investigated. To do this, a mathematical model of PV cells based on two diodes with shunt and series resistors is created with MATLAB/Simulink. The model characteristics curves with the parameters listed in the MSR SOLAR datasheet are compared. Finally, we compared the results of the FLC with those of the P&O and the INC. The results obtained demonstrated the superiority of the FLC-MPPT controller.