Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Utilization of a TSR-MPPT-Based Backstepping Controller and Speed Estimator Across Varying Intensities of Wind Speed Turbulence Elzein, I. M.; Maamar, Yahiaoui; Mahmoud, Mohamed Metwally; Mosaad, Mohamed I.; Shaaban, Salma Abdelaal
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1793

Abstract

Because wind systems are so prevalent in the electrical grid, an innovative control method can significantly increase the productivity of permanent magnet synchronous generators (PMSG). A wind power generation system's maximal power point (MPP) tracking control approach is presented in this paper. The nonlinear backstepping controller, which is robust to parameter uncertainty, is used in this work to enhance the tip speed ratio approach.  To lower the system's equipment and maintenance costs, we suggested utilizing a speed estimator. As a novel addition to the backstepping controller development, the suggested estimator is a component of the backstepping controller development. The control and system organization approaches are presented. Lyapunov analysis is used to guarantee the stability of the controller. To assess the suggested approach, step change and varying wind speed turbulence intensities are employed. The results expose the great efficiency of the proposed method in both tracking MPP and calculating generator speed.  The proposed control strategy and structure are validated by MATLAB simulations.
A Comparative Analysis of Recent MPPT Algorithms (P&O\INC\FLC) for PV Systems Maamar, Yahiaoui; Elzein, I. M.; Benameur, Afif; Mohamed, Horch; Mahmoud, Mohamed Metwally; Mosaad, Mohamed I.; Shaaban, Salma Abdelaal
Journal of Robotics and Control (JRC) Vol. 6 No. 4 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i4.25814

Abstract

Although solar (PV) power generators have been widely deployed, one important barrier to their effective energy capture is weather variability. It is a very challenging effort for these systems to operate at MPPT. Conventional MPPT methods still had an excessively long convergence period to the MPP. Because of their superior data processing, intelligent approaches are nevertheless given a reasonable length of time to reach the maximum point, beginning with the objective of keeping the PV generator in the MPP with outstanding performance. To accomplish MPPT, a comparison between intelligent (fuzzy control (FLC)) and conventional algorithms (perturb-and-observe (P&O) and the incremental conductance (INC)) is investigated. To do this, a mathematical model of PV cells based on two diodes with shunt and series resistors is created with MATLAB/Simulink. The model characteristics curves with the parameters listed in the MSR SOLAR datasheet are compared. Finally, we compared the results of the FLC with those of the P&O and the INC. The results obtained demonstrated the superiority of the FLC-MPPT controller.