Sari, Sri Kurnian
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Smart Sensors and Intelligent Analysis: A Literature Review on More Effective Early Warning Systems with IoT and Machine Learning Mustamin, Syaiful Bachri; Atnang , Muhammad; Sahriani , Sahriani; Fajar, Nurhikmah; Sari, Sri Kurnian; Pahlawan , Muammar Reza; Amrullah, Mujahidin
Journal of Scientific Insights Vol. 1 No. 4 (2024): December
Publisher : Science Tech Group

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69930/jsi.v1i4.182

Abstract

The IoT system described in the article "LoRaWAN-Based IoT System Implementation for Long-Range Outdoor Air Quality Monitoring" monitors air quality in real-time and transmits data through a LoRaWAN network to a public IoT platform. It measures seven key air quality parameters: nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon dioxide (CO₂), carbon monoxide (CO), PM2.5, temperature, and humidity. These parameters were chosen for their significant effects on air quality and human health. NO₂ and SO₂ come from fossil fuel combustion and can cause respiratory issues and acid rain. CO₂ contributes to climate change, while CO is toxic and harmful to health. PM2.5 particles can lead to respiratory and cardiovascular problems. The system uses sensors connected to an Arduino microcontroller to collect data, which is transmitted through a LoRa Shield to a LoRaWAN gateway. Data is then sent to The Things Network (TTN), integrated with ThingSpeak, and displayed on a web dashboard. Additionally, it is synchronized with the Virtuino smartphone app for mobile monitoring. The system has been validated by comparing its data to Aeroqual air quality monitors, demonstrating reliable real-time monitoring and transmission of air quality information over the internet.
The Application of Machine Learning and Intelligent Sensors for Real-Time Air Quality Monitoring: A Literature Review Mustamin, Syaiful Bachri; Atnang, Muhammad; Sahriani, Sahriani; Fajar, Nurhikmah; Sari, Sri Kurnian; Pahlawan , Muammar Reza; Amrullah, Mujahidin
Journal of Scientific Insights Vol. 1 No. 3 (2024): October
Publisher : Science Tech Group

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69930/jsi.v1i3.183

Abstract

Air pollution is a global issue that has major consequences for human health and the environment. Accurate air quality prediction plays an important role in mitigating and preventing the negative impacts of air pollution. The thirteen sources analyzed in this literature study show a growing trend in the use of machine learning for air quality prediction, driven by the limitations of traditional methods and machine learning capabilities in efficiently processing complex data. This literature study examines a variety of commonly used machine learning models, such as Support Vector Regression (SVR), Random Forest, Gradient Boosting, and Long Short-Term Memory (LSTM), and evaluates their performance based on metrics such as RMSE, MAE, and R². The sources also highlight the importance of understanding the factors that affect air quality, including concentrations of various pollutants (PM2.5, PM10, NO2, CO, SO2, and ozone), meteorological data (temperature, humidity, wind speed, air pressure, precipitation, and temperature inversion), traffic data, and spatial-temporal variations. The integration of the Internet of Things (IoT) and machine learning is the main focus in the development of real-time air quality monitoring systems. IoT sensors enable the collection of real-time air quality and meteorological data, which are then processed using machine learning models to generate predictions. This literature study identifies several challenges in air quality prediction, such as data limitations, the complexity of air pollution dynamics, and ethical & privacy considerations. However, machine learning offers great potential to improve the accuracy of air quality predictions and monitoring, thus contributing to a healthier and more sustainable environment.