Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Signal and Image Processing Letters

Computation and Analysis of Highly Stable and Efficient Non-toxic Perovskite CsSnGeI3 Based Solar Cells to Enhance Efficiency Using SCAPS-1D Software Hossain, Md Momin; Khan, Md Yakub Ali; Halim, Md Abdul; Elme, Nafisa Sultana; Islam, Md Shoriful
Signal and Image Processing Letters Vol 5, No 2 (2023)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v5i2.66

Abstract

This paper examines the physical, optical, and electrical characteristics of cesium tin-germanium triiodide based single halide Perovskite absorption materials in order to provide the best photovoltaic application. In light of the diversification of the use of natural resources, perovskite solar cells are becoming more and more essential for capturing renewable energy. In this research work, a cesium tin–germanium triiodide (CsSnGeI3) perovskite-based solar cell (PSC) has been reported to achieve a high-power-conversion efficiency (PCE).  CsSnGeI3 perovskite-based solar cell has been proposed for the Pb and toxic-free (Al/FTO/ TiO2/CsSnGeI3/Mo) structure simulated in Solar Cell Capacitance Simulator (SCAPS-1D software. At first aluminum, fluorine-doped tin oxide, Titanium dioxide, cesium tin–germanium triiodide and   Molybdenum have been inserted into SCAPS and simulated using specific temperature. In this simulation, the electron transport layer (ETL) FTO, the buffer layer  TiO2, and the absorber layer  CsSnGeI3 were all used. Utilizing variations in thickness including absorber and buffer, defect density, operating temperature, back contact work function, series and shunt resistances, acceptor density, and donor density, the performance of the proposed photovoltaic devices was quantitatively assessed. Throughout the simulation, the absorber layer thickness was held constant at 1.6 ?m, the buffer layer at 0.05 ?m, and the electron transport layer at 0.5 ?m. A solar cell efficiency of 24.75%, an open-circuit voltage of 0.95 volts, a short-circuit current density of 30.61 mA/cm2, and a fill factor (FF) of 85.42% have all been recorded for the  CsSnGeI3 absorber layer. Our ground-breaking findings unequivocally show that CsSnGeI3-based PSC is a strong contender to quickly overtake other single-junction solar cell technologies as the most effective.
A Review on Stability Challenges and Probable Solution of Perovskite–silicon Tandem Solar Cells Hossain, Md Momin; Khan, Md Yakub Ali; Halim, Md. Abdul; Elme, Nafisa Sultana; Hussain, Md. Nayeem
Signal and Image Processing Letters Vol 5, No 1 (2023)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v5i1.58

Abstract

Perovskite-silicon tandem solar cells have shown great potential in increasing the efficiency of solar cells, with efficiencies reaching as high as 25%. However, the stability of these cells remains a major challenge that must be addressed before they can be commercialized. This review focuses on the stability challenges of perovskite-silicon tandem solar cells and possible solutions to address these challenges. The main stability issues include the instability of the perovskite layer, the degradation of the silicon layer, and the failure of the interfaces between the layers. One solution is to use more stable perovskite materials, such as methylammonium lead iodide (MAPbI3) or formamidinium lead iodide (FAPbI3), which have shown better stability than traditional perovskite materials. Another solution is to use passivating layers, such as titanium dioxide, to protect the perovskite layer from degradation. Another solution is to use silicon heterojunction (SHJ) solar cells, which have shown better stability than traditional silicon solar cells. In addition, the use of encapsulation techniques, such as using a barrier layer or a hermetic seal, can help to protect the tandem solar cell from environmental degradation. In order to improve the stability of perovskite-silicon tandem solar cells, it is important to continue research on the development of more stable perovskite materials, passivating layers, and encapsulation techniques. Additionally, further research is needed to understand the mechanisms of degradation and to develop methods for monitoring and mitigating the degradation of the tandem solar cells.