Pinjarkar, Latika
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Random forest algorithm with hill climbing algorithm to improve intrusion detection at endpoint and network Sekar, Satheesh Kumar; Parvathy, Palaniraj Rajidurai; Pinjarkar, Latika; Latha, Raman; Sathish, Mani; Reddy, Munnangi Koti; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 1: January 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i1.pp134-142

Abstract

Cloud computing is a framework that enables end users to connect highly effective services and applications over the internet effortlessly. In the world of cloud computing, it is a critical problem to deliver services that are both safe and dependable. The best way to lessen the damage caused by entry into this environment is one of the primary security concerns. The fundamental advantage of a cooperative approach to intrusion detection system (IDS) is a superior vision of an action of network attack. This paper proposes a random forest (RF) algorithm with a hill-climbing algorithm (RFHC) to improve intrusion detection at the endpoint and network. Initially, it is used for feature selection, and the next process is to separate the intrusions detection. The feature selection is maintained by the hill climbing (HC) algorithm that chooses the best features. Then, we utilize the RF algorithm to separate the intrusion efficiently. The experimental results depict that the RFHC mechanism reached more acceptable results regarding recall, precision, and accuracy than a baseline mechanism. Moreover, it minimizes the miss detection ratio and enhances the intrusion detection ratio.
Advancing airway management for ventilation optimization in critical healthcare with cloud computing and deep learning Krishnamoorthi, Suresh Kumar; Karthi, Govindharaju; Radhika, Moorthy; Rathinam, Anantha Raman; Raju, Ayalapogu Ratna; Pinjarkar, Latika; Srinivasan, Chelliah
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 2: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i2.pp1053-1063

Abstract

Improving patient outcomes in critical care settings is significantly connected to effective ventilation control. This research introduces a new method for improving ventilation methods in critical healthcare utilizing a long short-term memory (LSTM) network hosted in the cloud. Ventilators, pulse oximeters, and capnography are just a few examples of medical equipment that input data into the system, which then uploads the data to the cloud for analysis. The LSTM network can learn from data patterns and correlations, drawing on respiratory parameters' time dynamics, to provide real-time suggestions and predictions for ventilation settings. The system aims to improve clinical results and reduce the risk of ventilator-induced lung damage by tailoring ventilation techniques according to each patient's requirements and by forecasting potential issues. Due to remote monitoring technology, medical professionals can quickly analyze their patient's conditions and act accordingly. The system allows for continuous improvement using iterative learning of more data and feedback. With the ability to optimize breathing and enhance patient care in critical healthcare situations, a hopeful development in airway management is needed.