Latha, Raman
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Random forest algorithm with hill climbing algorithm to improve intrusion detection at endpoint and network Sekar, Satheesh Kumar; Parvathy, Palaniraj Rajidurai; Pinjarkar, Latika; Latha, Raman; Sathish, Mani; Reddy, Munnangi Koti; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 1: January 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i1.pp134-142

Abstract

Cloud computing is a framework that enables end users to connect highly effective services and applications over the internet effortlessly. In the world of cloud computing, it is a critical problem to deliver services that are both safe and dependable. The best way to lessen the damage caused by entry into this environment is one of the primary security concerns. The fundamental advantage of a cooperative approach to intrusion detection system (IDS) is a superior vision of an action of network attack. This paper proposes a random forest (RF) algorithm with a hill-climbing algorithm (RFHC) to improve intrusion detection at the endpoint and network. Initially, it is used for feature selection, and the next process is to separate the intrusions detection. The feature selection is maintained by the hill climbing (HC) algorithm that chooses the best features. Then, we utilize the RF algorithm to separate the intrusion efficiently. The experimental results depict that the RFHC mechanism reached more acceptable results regarding recall, precision, and accuracy than a baseline mechanism. Moreover, it minimizes the miss detection ratio and enhances the intrusion detection ratio.
Enhanced performance and efficiency of robotic autonomous procedures through path planning algorithm Latha, Raman; Sriram, Saravanan; Bharathi, Balu; Fernandes, John Bennilo; Raju, Ayalapogu Ratna; Boopathy, Kannan; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp214-224

Abstract

To optimize surgical routes for better patient outcomes and more efficient operations, we want to test how well these algorithms work. Finding the best algorithms for different types of surgeries and seeing how they affect things like time spent in surgery, precision, and patient safety is the goal of this exhaustive study. By shedding light on the effectiveness of route planning algorithms, this work aspires to aid in the development of autonomous robotic surgery. To find out how well various algorithms work in actual surgical settings; this study compares them. The results of this work have the potential to enhance robotic surgery efficiency and improve surgical outcomes by informing the creation of more efficient route planning algorithms. The overarching goal of this study is to provide evidence that autonomous robotic surgery can benefit from using sophisticated route planning algorithms, which might lead to more accurate, faster, and safer procedures. The surgical patient dataset exhibits a wide variety of medical variables, including ages 38–62, weight 65–85 kg, height 160–180 cm, blood pressure 110–140/90 mm Hg, heart rate 70–85 bpm, hemoglobin 12–14 g/DL, and body mass index (BMI) 25.4–29.4.