Reddy, Munnangi Koti
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Random forest algorithm with hill climbing algorithm to improve intrusion detection at endpoint and network Sekar, Satheesh Kumar; Parvathy, Palaniraj Rajidurai; Pinjarkar, Latika; Latha, Raman; Sathish, Mani; Reddy, Munnangi Koti; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 1: January 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i1.pp134-142

Abstract

Cloud computing is a framework that enables end users to connect highly effective services and applications over the internet effortlessly. In the world of cloud computing, it is a critical problem to deliver services that are both safe and dependable. The best way to lessen the damage caused by entry into this environment is one of the primary security concerns. The fundamental advantage of a cooperative approach to intrusion detection system (IDS) is a superior vision of an action of network attack. This paper proposes a random forest (RF) algorithm with a hill-climbing algorithm (RFHC) to improve intrusion detection at the endpoint and network. Initially, it is used for feature selection, and the next process is to separate the intrusions detection. The feature selection is maintained by the hill climbing (HC) algorithm that chooses the best features. Then, we utilize the RF algorithm to separate the intrusion efficiently. The experimental results depict that the RFHC mechanism reached more acceptable results regarding recall, precision, and accuracy than a baseline mechanism. Moreover, it minimizes the miss detection ratio and enhances the intrusion detection ratio.
Evaluating tumor heterogeneity in oncology with genomic-imaging and cloud-based genomic algorithms Gurulakshmanan, Gurumoorthi; Amarnath, Raveendra N.; Lebaka, Sivaprasad; Reddy, Munnangi Koti; Mohankumar, Nagarajan; Muthumarilakshmi, Surulivelu; Srinivasan, Chelliah
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2427-2435

Abstract

The goal of this initiative is to rethink how oncology is traditionally practiced by integrating novel approaches to genomic imaging with cloud-based genomic algorithms. The research intends to give a thorough knowledge of cancer biology by focusing on the decoding of tumor heterogeneity as its primary objective. It is possible to get a more nuanced understanding of the intricacy of tumors via the integration of high-resolution imaging tools and sophisticated genetic analysis. It is a pioneering use of cloud computing, which enables the quick analysis of large genomic information. The major goal is to decipher the complex genetic variants that are present inside tumors in order to direct the creation of individualized treatment strategies. This discovery marks a significant step forward, since it successfully bridges the gap between genetics and imaging. Diagnostic accuracy and treatment effectiveness have both been improved. This innovative technique permits real-time analysis, which in turn enables treatment tactics to be adjusted in a timely manner. It makes a significant contribution to the continuous development of oncological research as well as its translation into better clinical outcomes for cancer patients.