Raju, Ayalapogu Ratna
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Advancing airway management for ventilation optimization in critical healthcare with cloud computing and deep learning Krishnamoorthi, Suresh Kumar; Karthi, Govindharaju; Radhika, Moorthy; Rathinam, Anantha Raman; Raju, Ayalapogu Ratna; Pinjarkar, Latika; Srinivasan, Chelliah
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 2: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i2.pp1053-1063

Abstract

Improving patient outcomes in critical care settings is significantly connected to effective ventilation control. This research introduces a new method for improving ventilation methods in critical healthcare utilizing a long short-term memory (LSTM) network hosted in the cloud. Ventilators, pulse oximeters, and capnography are just a few examples of medical equipment that input data into the system, which then uploads the data to the cloud for analysis. The LSTM network can learn from data patterns and correlations, drawing on respiratory parameters' time dynamics, to provide real-time suggestions and predictions for ventilation settings. The system aims to improve clinical results and reduce the risk of ventilator-induced lung damage by tailoring ventilation techniques according to each patient's requirements and by forecasting potential issues. Due to remote monitoring technology, medical professionals can quickly analyze their patient's conditions and act accordingly. The system allows for continuous improvement using iterative learning of more data and feedback. With the ability to optimize breathing and enhance patient care in critical healthcare situations, a hopeful development in airway management is needed.
Enhanced performance and efficiency of robotic autonomous procedures through path planning algorithm Latha, Raman; Sriram, Saravanan; Bharathi, Balu; Fernandes, John Bennilo; Raju, Ayalapogu Ratna; Boopathy, Kannan; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp214-224

Abstract

To optimize surgical routes for better patient outcomes and more efficient operations, we want to test how well these algorithms work. Finding the best algorithms for different types of surgeries and seeing how they affect things like time spent in surgery, precision, and patient safety is the goal of this exhaustive study. By shedding light on the effectiveness of route planning algorithms, this work aspires to aid in the development of autonomous robotic surgery. To find out how well various algorithms work in actual surgical settings; this study compares them. The results of this work have the potential to enhance robotic surgery efficiency and improve surgical outcomes by informing the creation of more efficient route planning algorithms. The overarching goal of this study is to provide evidence that autonomous robotic surgery can benefit from using sophisticated route planning algorithms, which might lead to more accurate, faster, and safer procedures. The surgical patient dataset exhibits a wide variety of medical variables, including ages 38–62, weight 65–85 kg, height 160–180 cm, blood pressure 110–140/90 mm Hg, heart rate 70–85 bpm, hemoglobin 12–14 g/DL, and body mass index (BMI) 25.4–29.4.