This Author published in this journals
All Journal Jurnal Ilmiah Kursor
Claim Missing Document
Check
Articles

Found 1 Documents
Search

SKIN RASH CLASSIFICATION SYSTEM USING MODIFIED DENSENET201 THROUGH RANDOM SEARCH FOR HYPERPARAMETER TUNING Riyana Putri, Fayza Nayla; Isnanto, R.Rizal; Sugiharto, Aris
Jurnal Ilmiah Kursor Vol. 12 No. 4 (2024)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i4.418

Abstract

Skin rashes caused by various diseases, such as monkeypox, cowpox, chickenpox, measles, and HFMD, often present similar symptoms, making accurate diagnosis challenging. This study aims to improve the classification of skin diseases through the application of a modified DenseNet-201 architecture combined with hyperparameter optimization using Random Search. The base DenseNet-201 model, with pre-trained weights, was first tested, achieving an accuracy of 63%, with the highest performance in the Healthy and HFMD classes. The proposed modified model, optimized using Random Search, improved overall accuracy to 80%, with enhanced precision, recall, and F1-score across most classes. The model’s performance was particularly notable in the HFMD and normal skin classes, although further improvements are needed for challenging classes like Cowpox and Measles. The findings highlight the potential of Random Search for hyperparameter tuning to enhance the performance of deep convolutional neural networks in the medical image classification domain, offering a promising tool for efficient and accurate skin disease detection.