Claim Missing Document
Check
Articles

Pembuatan Aplikasi Android Driver Control sebagai Sarana Memonitor Anak Berkendara secara Waktu-Nyata Roza, Lia Lidya; Isnanto, R. Rizal; Widianto, Eko Didik
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 2, No 2 (2016)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (310.655 KB) | DOI: 10.26555/jiteki.v2i2.5377

Abstract

 Zaman sekarang motor merupakan salah satu kebutuhan primer di Indonesia, hampir setiap keluarga setidaknya memiliki minimal 1 kendaraan bermotor, tak terkecuali anak-anak yang juga sudah diizinkan orang tua untuk mengendarai sepeda motor agar lebih mandiri. Namun tanpa disadari bahaya kecelakaan dan kejahatan seperti pencurian sepeda motor terus mengintai sang anak. Untuk itu diperlukan sebuah aplikasi yang dapat memonitor anak berkendara secara waktu-nyata sebagai upaya mengurangi angka kecelakaan lalu lintas dan pencurian sepeda motor. Metodologi penelitian pada aplikasi ini dibuat menggunakan model waterfall. Pembuatan aplikasi ini menggunakan perangkat lunak Android Studio dengan bahasa pemrograman Java, basisdata MySQL, dan berbasis Web Service. Hasil penelitian ini adalah aplikasi Android Driver Control yang mampu memberikan informasi lokasi kendaraan, kecepatan, notifikasi motor jatuh, dan rekaman data pengemudi. Pengguna dapat mematikan atau menghidupkan mesin motor secara otomatis melalui aplikasi ini. Aplikasi ini juga memiliki fasilitas login untuk admin yang digunakan untuk mengaktifkan atau menonaktifkan alat Driver Control. Aplikasi ini dapat digunakan lebih dari satu pengguna untuk memantau satu sepeda motor yang sudah terpasang alat Driver Control
Comparation on Several Smoothing Methods in Nonparametric Regression Isnanto, Rizal
JURNAL SISTEM KOMPUTER Vol 1, No 1 (2011): Sistem dan Aplikasi Komputer
Publisher : JURNAL SISTEM KOMPUTER

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (13.724 KB)

Abstract

There are three nonparametric regression methods covered in this section. These are Moving Average Filtering-Based Smoothing, Local Regression Smoothing, and Kernel Smoothing Methods. The Moving Average Filtering-Based Smoothing methods discussed here are Moving Average Filtering and Savitzky-Golay Filtering. While, the Local Regression Smoothing techniques involved here are Lowess and Loess. In this type of smoothing, Robust Smoothing and Upper-andLower Smoothing are also explained deeply, related to Lowess and Loess. Finally, the Kernel Smoothing Method involves three methods discussed. These are NadarayaWatson Estimator, Priestley-Chao Estimator, and Local Linear Kernel Estimator. The advantages of all above methods are discussed as well as the disadvantages of the methods.Index Terms — nonparametric regression, smoothing, moving average, estimator, curve construction.
Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM) Neneng, Neneng; Adi, Kusworo; Isnanto, Rizal
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 6, No 1 (2016): Volume 6 Nomor 1 Tahun 2016
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3977.488 KB) | DOI: 10.21456/vol6iss1pp1-10

Abstract

Texture is one of the most important features for image analysis, which provides informations such as the composition of texture on the surface structure, changes of the intensity, or brightness. Gray level co-occurence matrix (GLCM) is a method that can be used for statistical texture analysis. GLCM has proven to be the most powerful texture descriptors used in image analysis. This study uses the four-way GLCM 0o, 45o, 90o, and 135o. Support vector machine (SVM) is a machine learning that can be used for image classification. SVM has a high generalization capability without any requirement of additional knowledge, even with the high dimension of the input space. The data used in this study are the image of goat meat, buffalo meat, horse meat, and beef with shooting distance 20 cm, 30 cm and 40 cm. The result of this study shows that the best recognition rate of 87.5% was taken at a distance of 20 cm with neighboring pixels distance d = 2 in the direction GLCM 135o.
Penerapan Metode Self-Organizing Map (SOM) Untuk Visualisasi Data Geospasial Pada Informasi Sebaran Data Pemilih Tetap (DPT) Anis, Yunus; Isnanto, R.Rizal
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 4, No 1 (2014): Volume 4 Nomor 1 Tahun 2014
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1857.983 KB) | DOI: 10.21456/vol4iss1pp48-57

Abstract

A Self-Organizing Map (SOM ) is a neural network method that has been introduced by Professor Teuvo Kohonen since 1980, as an artificial neural network topology without supervision (Unsupervised ANN), in which the learning process does not require supervision or target output. In this paper, the implementation methods of SOM is used to perform data clustering voters (DPT) in the General Election Governor level. The results of the clustering process then used to perform data classification air-geographical references (geo-referenced) that integrates visualization of the output space through a cartographic representation of the color settings, and explore the use of line width between the boundary-water element geographic reference, calculated according to the distance in the input space is best between locations. Clustering results is then used as the basis for determining the color criteria in the development of the Web-GIS application based on interval number of voters.   Keywords : Self-organizing map; Unsupervised ANN; Clustering; Geo-referenced; Cartographics representation
Jaringan Syaraf Tiruan Perambatan Balik Untuk Pengenalan Wajah Saubari, Nahdi; Isnanto, Rizal; Adi, Kusworo
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 6, No 1 (2016): Volume 6 Nomor 1 Tahun 2016
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (865.153 KB) | DOI: 10.21456/vol6iss1pp30-37

Abstract

This research discusses about face detection and face recognition in an image. Face detection has only two classifications, i.e face and not face. Face recognition is compatible with some classifications of a number individuals who want to be recognized. Face detection and face recognition in thi study using Haar-Like Feature method and Artificial Neural Network Backpropagation. A method Haar-Like Feature used for detection and extraction in an image, because the clasification on this method showed success at used to detect image of the face. Artificial Neural Network Backpropagation is a training algorithm that is used to do training simulated on facial image data training stored in a database. This study uses Ms. Excel 2007 as database with 10 individual sample image, every image in each individuals having three distance with every range has four defferent light intensities, so that the data training stored in the database reached 120 data training. The results shows that the face detection and face recognition which is developed can recognize a face image with an average accuracy rate reaches 80,8% for each distance.
Penerapan Metode AHP dan Fuzzy Topsis Untuk Sistem Pendukung Keputusan Promosi Jabatan Muhardono, Ari; Isnanto, Rizal
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 4, No 2 (2014): Volume 4 Nomor 2 Tahun 2014
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (640.495 KB) | DOI: 10.21456/vol4iss2pp108-115

Abstract

Resources of humans is one of the assets of the organization that became the backbone of an organization in carrying out its activities and influence on the performance and progress of the organization. Systematic performance assessment and selection of employees with the best performance for the determination of a promotion is very important in strategic human resource management. But in fact the decision objectively, efficiently and effectively perform the selection of human resources is not easy, we need a model of decision-making to help solve that problem. Application of AHP and Fuzzy TOPSIS in the selection of this promotion can be provide alternative recommendations for decision-makers, so that the employee selection process can take place effectively and efficiently and to produce objective decisions. Implementation results of the study for the selection of a promotion with six criteria assessment criteria weighting the results obtained using the AHP Performance Value of 0,3509, Education Level of 0,1605, Class of 0,1005, Work period of 0,0367, The Presence of 0,0637 and the value of the competence of 0.2877. The weighting of the results was continued process of ranking the alternatives by using fuzzy TOPSIS method obtained the best results and the selected preference is for 0.8373   Keywords: Performance evaluation; Promotion; AHP; Topsis; Fuzzy
Evaluasi Kinerja Organisasi Publik Dengan Menggunakan Pendekatan Balanced Scorecard dan Analytic Network Process Tunggul, Adi Mora; Isnanto, Rizal; Nurhayati, Oky Dwi
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 6, No 2 (2016): Volume 6 Nomor 2 Tahun 2016
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (741.025 KB) | DOI: 10.21456/vol6iss2pp124-132

Abstract

Balanced scorecard is a strategic business management method that links performance evaluation to vision and strategies using a multidimensional set of financial and nonfinancial performance metrics. This study examined both quantitative data for the proposed Analytic Network Process method. The purpose of this research is to build a model that combines the Balanced Scorecard approach and Analytical Network Process to assist in the performance evaluation of public organizations tax services. Balanced Scorecard concept is applied to determine the hierarchy of the financial perspective, customer perspective, internal business processes, and learning and growth perspective as well as their respective performance indicators of public organizations and then Analytical Network Process used to tolerate vagueness and ambiguity of information and built an information system that is applied to facilitate the performance evaluation process. The study provides recommendations to the management of public organizations regarding the tax service strategy to improve the performance of public organizations.
Pengenalan Wajah dengan Matriks Kookurensi Aras Keabuan dan Jaringan Syaraf Tiruan Probabilistik Adi Putraa, Toni Wijanarko; Adi, Kusworo; Isnanto, Rizal
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 3, No 2 (2013): Volume 3 Nomor 2 Tahun 2013
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (801.722 KB) | DOI: 10.21456/vol3iss2pp82-94

Abstract

Sistem pengenalan wajah merupakan pengembangan metode dasar sistem autentifikasi dengan menggunakan karakteristik alami wajah manusia sebagai dasarnya. Proses pengenalan citra wajah ini melalui beberapa tahap yaitu tahap pelatihan dan tahap pengujian. Pada tahap pengujian dilakukan secara langsung dan tidak langsung. Secara tidak langsung data uji bersumber dari sekumpulan citra wajah yang sudah dipilih, sedangkan secara langsung citra wajah bersumber dari kamera. Pengenalan citra wajah manusia menggunakan penggabungan antara metode GLCM dan PNN. Tahap prapengolahan dengan merubah RGB ke dalam aras keabuan dengan metode centroid sebagai proses segmentasi citra wajah. Faktor pengenalan wajah yang diuji meliputi pencahayaan, jarak, sudut serta posisi. Pada GLCM menggunakan metode statistik dan analisis tekstur orde kedua karena merepresentasikan tekstur citra dalam parameter energi, korelasi, homogenitas dan kontras. Sedangkan PNN digunakan untuk pembentukan basisdata yang disimpan dalam jaringan untuk proses membandingkan hasil keluaran yang berupa data matrik hasil dari GLCM. Pada penelitian ini digunakan citra wajah sebagai basisdata dengan sampel sebanyak 10 orang dan 5 posisi wajah, 2 jarak pengambilan gambar citra wajah, serta 3 kategori pencahayaan. Proses pengujian menghasilkan tingkat pengenalan secara langsung sebesar 92%, sedangkan pengujian secara tidak langsung sebesar 93,33%.   Kata kunci: GLCM; PNN; Centroid; Prapengolahan
SISTEM IDENTIFIKASI GARIS UTAMA TELAPAK TANGAN MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DAN JARAK EUCLIDEAN Wicaksono, Galih; Isnanto, Rizal; Zahra, Ajub Ajulian
Transient: Jurnal Ilmiah Teknik Elektro TRANSIENT, VOL. 3, NO. 1, MARET 2014
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (611.308 KB) | DOI: 10.14710/transient.3.1.57-61

Abstract

Abstrak Identifikasi seseorang berdasarkan biometrik telah berkembang dengan pesat dikalangan akademik dan industri. Metode pengenalan identitas seseorang yang banyak digunakan berdasarkan nomor identitas unik (kunci fisik, kartu identitas dan lainnya) atau berdasarkan ingatan terhadap sesuatu (sandi rahasia dan lainnya). Metode tersebut banyak memiliki kekurangan di antaranya kartu identitas dapat hilang dan sandi dapat lupa dari ingatan seseorang. Dalam penelitian ini dibuat program pengenalan citra telapak tangan  dengan menggunakan metode Principal Components Analysis (PCA) dan jarak Euclidean. Dengan tujuan mendapatkan hasil pengenalan yang cukup baik untuk mengenali citra telapak tangan, dan memberikan saran untuk pengembangan sistem pengenalan telapak tangan agar semakin baik lagi. Dalam penelitian ini dinggunakan 150 citra latih dari 30 responden dan 60 citra uji dari 30 responden dan 10 responden uji di luar 30 responden dalam basisdata uji dan latih. Berdasarkan hasil pengujian pada tugas akhir ini, dengan variasi jumlah 50,75, dan 100  komponen utama dihasilkan tingkat pengenalan yang sama yaitu 90%. Sedangkan  pengujian menggunakan citra intensitas pencahayaan yang kurang, dihasilkan pengenalan yang sama, yaitu sebesar 90%. Namun untuk pengujian menggunakan 10 responden uji di luar 30 responden latih dan uji yang terdaftar dalam basisdata diperoleh hasil tidak dikenali  100%, hal ini sesuai dengan yang diharapkan dari aplikasi ini. Kata kunci : Pengenalan telapak tangan, Principal Components Analysis (PCA), Jarak Euclidean  Abstract Biometric identification has grown rapidly among civitas academica and industrial community. Person identity recognition methods which are widely used nowadays usually based on unique identification numbers (physical keys, identity cards etc.) or individual memory (password etc.). However, these methods tend to have many shortcomings such as identity cards could be lost and forgotten passwords from one’s memory. Biometric identifiers are often categorized as physiological (iris recognition, face detection, palm print, and fingerprint) or behavioral characteristics (voice and typing rhythm). This research is developed by palm print image recognition using Principal Components Analysis (PCA) and Euclidean distance. The objectives of this research are to find out a good palm print recognition and to recommend the development of palm print recognition in order to be better than before. This research involved 150 training images of 30 respondents, 60 experiment images from 30 respondents, and 10 experiment respondents out of those 30 respondents which participated in training and experiment database. Based on the experiment results in this final project, with variations in the amount of 50,75, 100 main components generated the same level of recognition which is 90 % . On the other hand, image testing by using low light intensity produced the same recognition which is 80 %. However, The experiments which involved 10 respondents out of 30 training and experimenting respondents which are listed in the database had resulted not recognized 100 % , which is in line with the expectations from this application. Keywords: Palm print recognition, Principal Components Analysis (PCA), Euclidean Distance.
PENCARIAN RUTE TERPENDEK MENGGUNAKAN ALGORTIMA SHOOTING-STAR(SHOOTING*) DAN ASTAR(A*) PADA SIG BERBASIS WEB UNTUK PEMETAAN PARIWISATA KOTA SEMARANG Widagdo, Donni; Somantri, Maman; Isnanto, R Rizal
Transient: Jurnal Ilmiah Teknik Elektro TRANSIENT, VOL. 2, NO. 4, DESEMBER 2013
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (361.681 KB) | DOI: 10.14710/transient.2.4.975-980

Abstract

Abstrak Semarang merupakan salah satu kota yang berada di propinsi Jawa Tengah.Kota yang menjadi pusat wilayah perkantoran , bisnis, pemerintahan, industri,dan sebagainya. Kota tersebut juga memiliki potensi sektor wisata yang dapat dikembangkan.Hal ini perlu dibutuhkan suatu sistem yang dapat diakses dengan mudah supaya para wisatawan dapat memperoleh dan menemukan informasi tempat wisata yang diinginkan.Sistem Informasi Geografis(SIG) Pariwisata dikembangkan dengan metode water fall mode, dan dibangun dengan bahasa pemrograman php. Penanganan data spasial  aplikasi tersebut menggunakan map server, untuk data atribut menggunakan PostgreSQL dan PostGIS, serta digunakan pgrouting (Astar dan Shooting-star) untuk menyelesaikan masalah pencaraian jalur terpendek. SIG Pariwisata dapat memberikan informasi secara detail mengenai tempat jurusan di kota Semarang serta menentukan jalur terpendek di jalan- jalan kota Semarang. Berdasarkan pengujian , maka aplikasi ini dapat memberikan informasi  rute jalan terpendek beserta jarak perjalanan dari dan menuju 107 jalan yang  ada di Kota Semarang. Algoritma Shooting-star dan Astar menghasilkan rute terpendek dengan algoritma Astar presentase kesuksesan 41,17%, kemudian algoritma Shooting- star presentase kesuksesan 31,76% sedangkan  sisa presentase yang lain merupakan galats dalam pemetaan, Sehingga Algortima Astar merupakan Algortima yang efektif dalam pencarian rute terpendek. Namun terdapat perbedaan waktu proses pencarian antar algoritma Shooting-star dan Astar. Algoritma Shooting-star  memperoleh waktu relatif lebih cepat dalam proses pencarian. Kata kunci : Semarang,SIG,pariwisata, MapServer, PostgreSQL, PostGIS, pgRouting (Astar dan Shooting-star).  Abstract Semarang is a city located in the province of Middle Java.City as the center of the office , businesses , government , industry , and the other . The city also has the potential of tourism sector that can be improved. It needs  a system that can be accessed easily so that tourists can get and find the desired information sights . Geographic Information Systems (GIS) developed by Tourism method water fall model , and built with php programming language . Spatial data handling applications use the map server , for data attributes using PostgreSQL and PostGIS , and used pgrouting ( astar and Shooting - star ) to solve shortest path problems. Tourism GIS can provide detailed information about their place in the city of Semarang majors and determine the shortest path in the streets of the city of Semarang Based on testing, then this application can provide the shortest path along the travel distance to and from the 107 road in the city Semarang. Shooting-star Algorithm and Astar Algorithm produce shortest Path. Astar algortihm with precentage succesfully 41,17%, while the other is the residual percentage error in the mapping,Then Shooting-star algortihm precentage successfully 31,76% so Astar Algorithm is effective  in shortest path. There is diferrentiate time process shortest path between Shooting-star Algorithm dan Astar Algorithm. Shooting-Star Algorithm takes process time shortest path is faster than Astar Algorithm. Keyword : Semarang , GIS , tourism , MapServer , PostgreSQL , PostGIS , pgRouting(Astar dan Shooting-star) . 
Co-Authors Abdul Syakur Achmad Chaerodin Achmad Hidayatno Achmad Hidayatno Ade Riyantika Dewi Adhi Susanto Adi Mora Tunggul Adi Wijaya Adian Fatchur Rochim Adrian Putranda Rispurwadi Agus Suprihanto Agustini, Eka Puji Ahmad Ramdhani Ajub Ajulian Zahra Macrina Alan Prasetyo Rantelino Albert Ginting An'im Almiktad Andhika Dewanta Andhika Hanifa Naufaliawan Andino Maseleno Anton Satria Prabuwono Ardianto Eskaprianda Ari Muhardono Arianto, Mufid Aris Puji Widodo Aris Sugiharto Aris Triwiyatno Astrid Aprillini Aulia Nastiti Aziz, RZ. Abdul Bhutra, Yuvraj Budi Warsito Catur Edi Widodo Chauhan, Rahul Damar Wicaksono Danang Respati Setyabudi Deddy Sucipta Syahril Dewi, Deshinta Arrova Dewi, Rany Puspita Dhody Kurniawan Dian Kurnia Widya Buana Dilan Arya Sujati Dimas Robby Firmanda Dini Indriyani Putri Donni Widagdo Dwi Novianto Eko Didik Widianto Eko Winarto Erizco Satya Wicaksono Ervin Adhi Cahyanugraha Fatima Setyani Ferry Dwi Setiyawan Firdaus Aditya GALIH WICAKSONO Gilang Aditya Pamungkas Handayani, Sri Hardiyanto Hardiyanto Hayu Andarwati Hefmi Fauzan Imron Hendy Cahya Lesmana Hilal Afrih Juhad Ike Pertiwi Windasari Imaduddin Amrullah Muslim Imam Tahyudin Irham Fa'idh Faiztyan Iwan Purwanto Jatmiko Endro Suseno Julianto, Dewa Rizki Rahmat Kataria, Yachi Kurniawan Teguh Martono Kurniawan, Tri Basuki Kusworo Adi Lia Lidya Roza Liga Filosa M Said Hasibuan Maizary, Ary Maman Somantri Martin Clinton Tosima Manullang Maulana Muhammad Iqbal Misik Puspajati Nurmadjid Saputri Mona Pradipta Hardiyanti Muh. Udka Muhamad Taopik Gibran Muhammad Fahmi Awaj Muhammad Kautsar Muhammad Nur Hadi Munawar Agus Riyadi Mustafa, Mustafa Mustafid Mustafid Nahdi Saubari Nanang Sulaksono, Nanang Nazwan, Nazwan Neneng Neneng Nur Setyo Permatasasi Putri W Nurhayati, Oki Dwi Nurul Arifa Oky Dwi Nurhayati Pertiwi, Rahayu Putri Prakasa, Fawwaz Bimo Pramuko Tri Prastowo Prima Widyaningrum PUJI LESTARI Qoriani Widayati Rachel Chrysilla Tijono Refika Khoirunnisa Reza Najib Hidayat Rinta Kridalukmana Rinta Kridalukmana Rivaldi MHS Riyana Putri, Fayza Nayla Rizaldi Habibie Rizaldy Khair Rizky Gelar Maliq Rosdelima Hutahaean Roza, Lia Lidya Rozak, Rofik Abdul Ruli Handrio Santoso, Imam Saptian, Fiega Adhi Sapto Nisworo Sasongko, Cornelius Damar Satya Arisena Hendrawan Setiawan, Annas Sri Lestari Sri Sumiyati Sri Widodo, Thomas Suhardjo Suhardjo Sumardi . Talitha Almira Taqwa Hariguna Teguh Dwi Prihartono Tikaningsih, Ades Toni Wijanarko Adi Putra Triloka, Joko Tyas Panorama Nan Cerah Ucky Pradestha Novettralita Ufan Alfianto Unaliya, Maitri Waluyo Nugroho Waluyo Wandri Okki Saputra Wibaselppa, Anggawidia Widi Puji Atmojo Widiasmoro, Andi Wijaya, Elang Pramudya Yatim, Ardiyansyah Saad Yeh, Ming-Lang Yenita Dwi Setiyawati Yessy Kurniasari Yongki Yonatan Marbun Yudi Eko Windarto Yunus Anis, Yunus