Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENINGKATAN KESADARAN BAHAYA KECANDUAN GAWAI DAN CYBER BULLYING MELALUI PROGRAM MABIT DI DESA MEKARSARI KECAMATAN CILAWU Mubarok, Muhammad Syauqi; Riki Mutakin, Ripan; Syamsudin A, Khoir; Ahmad Taufik, Asep; Azkia, Azka; Ashabil Haqdu, Gezant; Agustiansyah, Yoga; Amiludin, Ikbal; Yasa Riswanda, Dede; Ruli Cahyadi, Deden; Maulana Fazri, Moch Nashrull; Salsabila, Rosa; Hanafiah, Moch Rochmat; Dhiyaaul Haq, Harish; Permata Sari, Riani; Nauri, Shilan; Subekti, Aldi; Mardiana Muttaqin, Rhama; Salman Alfarizi, Muhammad
Jurnal PkM MIFTEK Vol 5 No 2 (2024): Jurnal PkM MIFTEK
Publisher : Institut Teknologi Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33364/miftek/v.5-2.2072

Abstract

Kegiatan Malam Bina Iman dan Takwa (MABIT) yang dikombinasikan dengan literasi digital tentang bahaya penggunaan gawai berlebihan dan cyber bullying dilaksanakan sebagai bagian dari program Kuliah Kerja Nyata (KKN) mahasiswa Institut Teknologi Garut di Desa Mekarsari, Kecamatan Cilawu, Kabupaten Garut. Kegiatan ini bertujuan untuk memberikan edukasi kepada masyarakat, khususnya remaja, mengenai pentingnya menjaga akhlak terhadap orang tua dan meningkatkan kesadaran akan dampak negatif teknologi, seperti kecanduan gawai dan cyber bullying. Metode yang digunakan dalam kegiatan ini adalah Penelitian Tindakan Partisipatif, di mana peserta dilibatkan secara aktif dalam ceramah keagamaan, diskusi, jurit malam, dan sesi literasi digital. Hasil kegiatan menunjukkan adanya peningkatan pemahaman peserta tentang bahaya kecanduan gawai dan cyber bullying. Sebagian besar peserta menyatakan bahwa mereka baru sadar akan bahayanya penggunaan gawai secara berlebihan, dan banyak diantaranya menyatakan baru memahami pentingnya menjaga etika di dunia digital setelah mengikuti kegiatan ini. Program ini diharapkan dapat berkelanjutan melalui kolaborasi dengan tokoh agama dan lembaga pendidikan setempat, sehingga literasi digital dan penguatan nilai-nilai moral dapat terus ditingkatkan.
Gender Identification from Facial Images Using Custom Convolutional Neural Network Architecture Amiludin, Ikbal; Putra, Andika Eka Sastya
Journal of Intelligent Systems Technology and Informatics Vol 1 No 1 (2025): JISTICS, March 2025
Publisher : Aliansi Peneliti Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64878/jistics.v1i1.27

Abstract

Gender classification from facial images has become increasingly important in biometric applications. This study introduces a deep learning approach utilizing a custom convolutional neural network (CNN) model trained on 8,908 labeled facial images obtained from Kaggle, comprising 4,169 female and 4,739 male samples. Each image underwent preprocessing, including grayscale conversion, face alignment, cropping, resizing to 100×100 pixels, and pixel normalization. The CNN architecture consists of three convolutional layers with ReLU activation, max-pooling layers, a flatten layer, and two dense layers, ending with a sigmoid activation function for binary classification. The model was implemented using TensorFlow and trained for 70 epochs on Google Colab with GPU acceleration. Evaluation metrics include classification accuracy, confusion matrix, and area under the curve (AUC) from the ROC curve. The proposed system achieved 90.79% accuracy and 0.97 AUC, indicating robust performance. However, the confusion matrix revealed slightly higher precision for male predictions, suggesting the need for class balance refinement. The method demonstrates strong potential for integration into real-world facial analysis systems, such as identity verification, access control, and intelligent surveillance platforms.