Claim Missing Document
Check
Articles

Found 3 Documents
Search

Enhancing XGBoost Performance in Malware Detection through Chi-Squared Feature Selection Rosyada, Salma; Rafrastara, Fauzi Adi; Ramadhani, Arsabilla; Ghozi, Wildanil; Yassin, Warusia
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 3 (2024): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i3.2293

Abstract

The increasing prevalence of malware poses significant risks, including data loss and unauthorized access. These threats manifest in various forms, such as viruses, Trojans, worms, and ransomware. Each continually evolves to exploit system vulnerabilities. Ransomware has seen a particularly rapid increase, as evidenced by the devastating WannaCry attack of 2017 which crippled critical infrastructure and caused immense economic damage. Due to their heavy reliance on signature-based techniques, traditional anti-malware solutions struggle to keep pace with malware's evolving nature. However, these techniques face limitations, as even slight code modifications can allow malware to evade detection. Consequently, this highlights weaknesses in current cybersecurity defenses and underscores the need for more sophisticated detection methods. To address these challenges, this study proposes an enhanced malware detection approach utilizing Extreme Gradient Boosting (XGBoost) in conjunction with Chi-Squared Feature Selection. The research applied XGBoost to a malware dataset and implemented preprocessing steps such as class balancing and feature scaling. Furthermore, the incorporation of Chi-Squared Feature Selection improved the model's accuracy from 99.1% to 99.2% and reduced testing time by 89.28%, demonstrating its efficacy and efficiency. These results confirm that prioritizing relevant features enhances both the accuracy and computational speed of the model. Ultimately, combining feature selection with machine learning techniques proves effective in addressing modern malware detection challenges, not only enhancing accuracy but also expediting processing times.             
IMPROVING MALWARE DETECTION USING INFORMATION GAIN AND ENSEMBLE MACHINE LEARNING Ramadhani, Arsabilla; Rafrastara, Fauzi Adi; Rosyada, Salma; Ghozi, Wildanil; Osman, Waleed Mahgoub
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 6 (2024): JUTIF Volume 5, Number 6, Desember 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.6.3903

Abstract

Malware attacks pose a serious threat to digital systems, potentially causing data and financial losses. The increasing complexity and diversity of malware attack techniques have made traditional detection methods ineffective, thus AI-based approaches are needed to improve the accuracy and efficiency of malware detection, especially for detecting modern malware that uses obfuscation techniques. This study addresses this issue by applying ensemble-based machine learning algorithms to enhance malware detection accuracy. The methodology used involves Random Forest, Gradient Boosting, XGBoost, and AdaBoost, with feature selection using Information Gain. Datasets from VirusTotal and VxHeaven, including both goodware and malware samples. The results show that Gradient Boosting, strengthened with Information Gain, achieved the highest accuracy of 99.1%, indicating a significant improvement in malware detection effectiveness. This study demonstrates that applying Information Gain to Gradient Boosting can improve malware detection accuracy while reducing computational requirements, contributing significantly to the optimization of digital security systems.
Enhancing XGBoost Performance in Malware Detection through Chi-Squared Feature Selection Rosyada, Salma; Rafrastara, Fauzi Adi; Ramadhani, Arsabilla; Ghozi, Wildanil; Yassin, Warusia
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 3 (2024): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i3.2293

Abstract

The increasing prevalence of malware poses significant risks, including data loss and unauthorized access. These threats manifest in various forms, such as viruses, Trojans, worms, and ransomware. Each continually evolves to exploit system vulnerabilities. Ransomware has seen a particularly rapid increase, as evidenced by the devastating WannaCry attack of 2017 which crippled critical infrastructure and caused immense economic damage. Due to their heavy reliance on signature-based techniques, traditional anti-malware solutions struggle to keep pace with malware's evolving nature. However, these techniques face limitations, as even slight code modifications can allow malware to evade detection. Consequently, this highlights weaknesses in current cybersecurity defenses and underscores the need for more sophisticated detection methods. To address these challenges, this study proposes an enhanced malware detection approach utilizing Extreme Gradient Boosting (XGBoost) in conjunction with Chi-Squared Feature Selection. The research applied XGBoost to a malware dataset and implemented preprocessing steps such as class balancing and feature scaling. Furthermore, the incorporation of Chi-Squared Feature Selection improved the model's accuracy from 99.1% to 99.2% and reduced testing time by 89.28%, demonstrating its efficacy and efficiency. These results confirm that prioritizing relevant features enhances both the accuracy and computational speed of the model. Ultimately, combining feature selection with machine learning techniques proves effective in addressing modern malware detection challenges, not only enhancing accuracy but also expediting processing times.