Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparative Analysis of Feature Selection Methods with XGBoost for Malware Detection on the Drebin Dataset Latifah, Ines Aulia; Rafrastara, Fauzi Adi; Bintoro, Jevan; Ghozi, Wildanil; Osman, Waleed Mahgoub
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 3 (2024): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i3.2294

Abstract

Malware, or malicious software, continues to evolve alongside increasing cyberattacks targeting individual devices and critical infrastructure. Traditional detection methods, such as signature-based detection, are often ineffective against new or polymorphic malware. Therefore, advanced malware detection methods are increasingly needed to counter these evolving threats. This study aims to compare the performance of various feature selection methods combined with the XGBoost algorithm for malware detection using the Drebin dataset, and to identify the best feature selection method to enhance accuracy and efficiency. The experimental results show that XGBoost with the Information Gain method achieves the highest accuracy of 98.7%, with faster training times than other methods like Chi-Squared and ANOVA, which each achieved an accuracy of 98.3%. Information Gain yielded the best performance in accuracy and training time efficiency, while Chi-Squared and ANOVA offered competitive but slightly lower results. This study highlights that appropriate feature selection within machine learning algorithms can significantly improve malware detection accuracy, potentially aiding in real-world cybersecurity applications to prevent harmful cyberattacks.
IMPROVING MALWARE DETECTION USING INFORMATION GAIN AND ENSEMBLE MACHINE LEARNING Ramadhani, Arsabilla; Rafrastara, Fauzi Adi; Rosyada, Salma; Ghozi, Wildanil; Osman, Waleed Mahgoub
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 6 (2024): JUTIF Volume 5, Number 6, Desember 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.6.3903

Abstract

Malware attacks pose a serious threat to digital systems, potentially causing data and financial losses. The increasing complexity and diversity of malware attack techniques have made traditional detection methods ineffective, thus AI-based approaches are needed to improve the accuracy and efficiency of malware detection, especially for detecting modern malware that uses obfuscation techniques. This study addresses this issue by applying ensemble-based machine learning algorithms to enhance malware detection accuracy. The methodology used involves Random Forest, Gradient Boosting, XGBoost, and AdaBoost, with feature selection using Information Gain. Datasets from VirusTotal and VxHeaven, including both goodware and malware samples. The results show that Gradient Boosting, strengthened with Information Gain, achieved the highest accuracy of 99.1%, indicating a significant improvement in malware detection effectiveness. This study demonstrates that applying Information Gain to Gradient Boosting can improve malware detection accuracy while reducing computational requirements, contributing significantly to the optimization of digital security systems.
Comparative Analysis of Feature Selection Methods with XGBoost for Malware Detection on the Drebin Dataset Latifah, Ines Aulia; Rafrastara, Fauzi Adi; Bintoro, Jevan; Ghozi, Wildanil; Osman, Waleed Mahgoub
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 3 (2024): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i3.2294

Abstract

Malware, or malicious software, continues to evolve alongside increasing cyberattacks targeting individual devices and critical infrastructure. Traditional detection methods, such as signature-based detection, are often ineffective against new or polymorphic malware. Therefore, advanced malware detection methods are increasingly needed to counter these evolving threats. This study aims to compare the performance of various feature selection methods combined with the XGBoost algorithm for malware detection using the Drebin dataset, and to identify the best feature selection method to enhance accuracy and efficiency. The experimental results show that XGBoost with the Information Gain method achieves the highest accuracy of 98.7%, with faster training times than other methods like Chi-Squared and ANOVA, which each achieved an accuracy of 98.3%. Information Gain yielded the best performance in accuracy and training time efficiency, while Chi-Squared and ANOVA offered competitive but slightly lower results. This study highlights that appropriate feature selection within machine learning algorithms can significantly improve malware detection accuracy, potentially aiding in real-world cybersecurity applications to prevent harmful cyberattacks.