Febriyan, Farhan Sulis
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Kesehatan Mental untuk Mencegah Gangguan Mental pada Mahasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Random Forest: Mental Health Analysis to Prevent Mental Disorders in Students Using The K-Nearest Neighbor (K-NN) Algorithm and Random Forest Algorithm Nurdiansyah, Najib; Febriyan, Farhan Sulis; Amanta, Zanuar Gesit Dian; Saputra, Dicky Arya; Baihaqi, Wiga Maulana
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 1 (2025): MALCOM January 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i1.1537

Abstract

Pada era modern, gangguan mental menjadi masalah kesehatan global. Organisasi Kesehatan Dunia (WHO) memperkirakan bahwa satu dari empat orang di seluruh dunia mengalami gangguan mental atau neurologis. Gangguan sering terjadi pada pelajar yang salah satunya adalah mahasiswa.  Kesehatan mental mahasiswa, yang akan menjadi generasi penerus bangsa, sangat penting untuk keberhasilan mereka di bidang akademis ataupun non akademis dan peran mereka di masyarakat di masa depan. Dengan menggunakan algoritma K-Nearest Neighbor (K-NN) dan Randon Forest, penelitian ini bertujuan untuk menganalisis kesehatan mental untuk mencegah gangguan mental pada siswa. Dataset "Student mental health.csv" digunakan, yang diambil dari situs web Kaggle yang mencakup berbagai variabel terkait kesehatan siswa. Proses yang digunakan termasuk analisis data eksploratif, preprocessing data, modeling data menggunakan algoritma K-Nearest Neighbor (K-NN) dan Random Forest , dan akhirnya evaluasi. Hasil menunjukkan bahwa K-NN memiliki akurasi sebesar 90% pada splitting data 80:20, sedangkan Random Forest memiliki akurasi sebesar 85% pada splitting data yang sama. Namun, pada splitting data 70:30, kinerja K-NN turun menjadi 83%, sebanding dengan akurasi Random Forest 83% pada splitting data yang sama. Penelitian ini menyimpulkan bahwa, dalam beberapa kasus, algoritma K-NN menunjukkan akurasi yang sedikit lebih baik, sementara Random Forest menunjukkan kinerja yang lebih konsisten dalam berbagai pembagian data.