Claim Missing Document
Check
Articles

Found 12 Documents
Search

REGRESI LINIER SEDERHANA UNTUK MEMPREDIKSI KUNJUNGAN PASIEN DI RUMAH SAKIT BERDASARKAN JENIS LAYANAN DAN UMUR PASIEN Baihaqi, Wiga Maulana; Dianingrum, Melia; Ramadhan, Kurnia Aswin Nuzul
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 10, No 2 (2019): JURNAL SIMETRIS VOLUME 10 NO 2 TAHUN 2019
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (898.491 KB) | DOI: 10.24176/simet.v10i2.3484

Abstract

Rumah Sakit merupakan sebuah institusi pelayanan kesehatan yang menyediakan dan memberikan pelayanan kesehatan kepada masyarakat. RSUD Cilacap merupakan Rumah Sakit Umum Daerah milik Kabupaten Cilacap yang merupakan Rumah Sakit terbesar di Daerah Cilacap. Seiring bertambahnya jumlah populasi manusia dan keadaan perekonomian yang semakin maju, maka tingkat kesadaran masyarakat terhadap kesehatan semakin meningkat. Maka diperlukan sebuah metode untuk memprediksi jumlah kunjungan pasien pada RSUD Cilacap. Perkiraan jumlah kunjungan pasien merupakan hal yang sangat penting bagi pihak Rumah Sakit, karena dapat digunakan untuk membantu pihak dari manajemen Rumah Sakit dalam melakukan sebuah perencanaan serta mengambil suatu kebijakan. Tujuan dari penelitian ini adalah untuk mengetahui hasil prediksi jumlah kunjungan pasien pada RSUD Cilacap menggunakan metode regresi linier. Metode regresi linier merupakan metode yang terdiri dari satu atau lebih variabel independen yang biasa dengan notasi X dan satu variabel respon yang bisa diwakili dengan Y. Pada penelitian ini Metode prediksi regresi linier dapat menghasilkan prediksi dengan beberapa kriteria nilai error MAPE, dimana terdapat 26 model prediksi regresi linier yang memiliki nilai error kurang dari 20% artinya mempunyai akurasi sebesar 80%. Akan tetapi, terdapat 3 model prediksi regresi linier yang masuk dalam kategori buruk yaitu nilai errornya lebih dari 50%, dan terdapat 1 model prediksi regresi linier yang termasuk dalam kategori cukup atau mempunyai nilai error sebesar 20% sampai 50%.
THE IMPLEMENTATION OF SIMPLE ADDITIVE WEIGHTING METHOD IN THE SELECTION OF REHABILITATION FUND RECIPIENTS FOR UNINHABITABLE HOME Krisbiantoro, Dwi; Baihaqi, Wiga Maulana
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 10, No 1 (2019): JURNAL SIMETRIS VOLUME 10 NO 1 TAHUN 2019
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (444.401 KB) | DOI: 10.24176/simet.v10i1.3023

Abstract

The rehabilitation program is one of the programs given to people who have homes that are not habitable. They are usually from poor families with low economic income. In this program, the family will receive funds to rehabilitate their home. However, as long as the program is running, various problems have been encountered, including those who received fund sometimes received back the fund for rehabilitation funds. This is of course not in accordance with regulations that only allow applicants to receive the fund once. Based on this problem, a decision support system was made to select potential recipients of rehabilitation funds for uninhabitable house. By using the SAW method which is based on the value of criteria and preference weights, an appropriate assessment and ranking can be obtained after going through the selection process of assessing the weight of each attribute. The support for the selection decision for receiving uninhabitable rehabilitation fund was generated in this study. Decision making to determine beneficiaries was facilitated by the existence of a decision support system that was submitted, so that the fund provided was targeted at those entitled to receive uninhabitable rehabilitation fund.
Regresi Linier Sederhana untuk Memprediksi Kunjungan Pasien di Rumah Sakit Berdasarkan Jenis Layanan dan Umur Pasien Baihaqi, Wiga Maulana; Dianingrum, Melia; Nuzul Ramadhan, Kurnia Aswin
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 5, No 2 (2019): Desember 2019
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.013 KB) | DOI: 10.24014/coreit.v5i2.7067

Abstract

Rumah Sakit merupakan sebuah institusi pelayanan kesehatan yang menyediakan dan memberikan pelayanan kesehatan kepada masyarakat. RSUD Cilacap merupakan Rumah Sakit Umum Daerah milik Kabupaten Cilacap yang merupakan Rumah Sakit terbesar di Daerah Cilacap. Seiring bertambahnya jumlah populasi manusia dan keadaan perekonomian yang semakin maju, maka tingkat  kesadaran masyarakat terhadap kesehatan semakin meningkat. Maka diperlukan sebuah metode untuk memprediksi jumlah kunjungan pasien pada RSUD Cilacap. Perkiraan jumlah kunjungan pasien merupakan hal yang sangat penting bagi pihak Rumah Sakit, karena dapat digunakan untuk membantu pihak dari manajemen Rumah Sakit dalam melakukan sebuah perencanaan serta mengambil suatu kebijakan. Tujuan dari penelitian ini adalah untuk mengetahui hasil prediksi jumlah kunjungan pasien pada RSUD Cilacap menggunakan metode regresi linier. Metode regresi linier merupakan metode yang terdiri dari satu atau lebih variabel independen yang biasa dengan notasi X dan satu variabel respon yang bisa diwakili dengan Y. Pada penelitian ini Metode prediksi regresi linier dapat menghasilkan prediksi dengan beberapa kriteria nilai error MAPE, dimana terdapat 26 model prediksi regresi linier yang memiliki nilai error kurang dari 20% artinya mempunyai akurasi sebesar 80%. Kemudian terdapat 3 model prediksi regresi linier yang masuk dalam kategori buruk yaitu nilai errornya lebih dari 50%. Dan terdapat 1 model prediksi regresi linier yang termasuk dalam kategori cukup atau mempunyai nilai error sebesar 20% sampai 50%.
Classification Analysis of Multiple Sclerosis Using Logistic Regression and SVM Algorithms Laela, Ida Nur; Baihaqi, Wiga Maulana
Generation Journal Vol 8 No 1 (2024): Generation Journal
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/gj.v8i1.20646

Abstract

Health is the most important aspect to support daily activities. Of course, by having a healthy body, everyone can carry out various activities comfortably and calmly. Every individual certainly has a strong instinct to live a healthy life and be free from disease, one of which is by increasing the body's immunity. Multiple sclerosis (multiple sclerosis/MS) is a neurodegenerative autoimmune disease that affects the central nervous system. The affliction of MS is characterized by chronic inflammation, demyelination, gliosis, and neuronal death. The symptoms faced by MS patients are unpredictable, so there is a need for a classification related to the disease. Therefore, a classification study was carried out using the logistic regression algorithm and SVM. The method used in this research is a literature study with the Python programming language. The results of this study indicate that the SVM algorithm has a high accuracy rate of 88.33% of the logistic regression algorithm. So it can be concluded from this study that the SVM method has good performance for processing multiple sclerosis datasets.
RANCANG BANGUN SISTEM PEMESANAN TIKET PESAWAT BERBASIS WEB Hakim, Arief Rachman; Baihaqi, Wiga Maulana
Komputa : Jurnal Ilmiah Komputer dan Informatika Vol 12 No 2 (2023): Komputa : Jurnal Ilmiah Komputer dan Informatika
Publisher : Program Studi Teknik Informatika - Universitas Komputer Indonesia (UNIKOM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/komputa.v12i2.10506

Abstract

Indonesia is the largest archipelagic country in the world which has very strategic geography. This can bring many opportunities in exploring natural riches and environmental services. For this reason, the existence of reliable and efficient transportation is very important. One means of transportation that is very popular and widely used by the public is airplanes. In this case, aircraft have made a significant contribution in supporting global connectivity, tourism and economic growth in various sectors. Even though airplane transportation has various advantages, there are still shortcomings in the airplane ticket purchasing process which still relies heavily on travel agents or direct purchases through the destination airline. This often causes problems, such as unstable ticket prices and concerns regarding the security of the ticket purchasing process. One innovation that can be a solution to the problem of purchasing plane tickets is the development of an application that provides a platform for purchasing plane tickets from various airlines. This application will combine various ticket options from various airlines on one platform. Apart from that, the application will also ensure the safety and security of passengers by providing the latest information about the availability of facilities on the plane and payment methods that are familiar to users. Thus, this application will provide convenience, comfort and security for prospective passengers in purchasing airline tickets of their choice.
Perancangan Aplikasi Tebak Gambar Untuk Anak Tunarungu Elistiana, Khoerotul Melina; Baihaqi, Wiga Maulana
BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer Vol 4 No 1 (2023): March
Publisher : Puslitbang Sinergis Asa Professional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37148/bios.v4i1.56

Abstract

Indonesia is one of the countries with the largest population in the world so it has various community groups, one of which is children with special needs who are deaf. A deaf child is someone who has lost the ability to hear. At a school in Purwokerto, deaf students cannot recognize general knowledge and arelazy to learn, especially in flat shape material. Often children like this need special tools in their learning to be effective, but the price of a teaching aid is quite expensive, so not all schools can afford it. As the technology of teaching aids develops, an application system that is more practical can be made, users just need to install it, no need to incur costs. In order for everything to be achieved, an MDLC (Multimedia Development Life Cycle) method was applied which was developed by Luther. This method has several stages of research such as concept, design, material collection, assembly, testing and distribution. Where the results of the research contain application designs that suit the needs of deaf children with features that are easy to understand.
Sentiment Analysis of Product Reviews as A Customer Recommendation Using the Naive Bayes Classifier Algorithm Hariguna, Taqwa; Baihaqi, Wiga Maulana; Nurwanti, Aulia
International Journal of Informatics and Information Systems Vol 2, No 2: September 2019
Publisher : International Journal of Informatics and Information Systems

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/ijiis.v2i2.13

Abstract

In an e-commerce Shopee, the process of selling and buying continues to run every day, and the comments given by consumers will increase more and more. Comments given by consumers will be the reference/review of a product that has been purchased by consumers. Consumers freely provide a review containing positive comments and negative comments in the Comments field listed on the Shopee e-commerce website. With the above problems, researchers will do a research with the method of sentiment analysis to distinguish classes in product review comments that include positive comment class or negative comment class using a combination of K-means and naive Bayes classifier. K-means used to determine the grouping of classes; naive Bayes classifier used to get the value of accuracy. The results obtained based on clustering K-means include getting 116 negative comments on product reviews and 37 negative comments product reviews. Accuracy results obtained from product review comment data of 77.12%. Thus, the accuracy value using K-means and naive Bayes classifier without manual data get a higher accuracy value is compared using K-means, Naive Bayes classifier, and manual data get results lower accuracy of 56.86%. From the results above the most comments is a negative comment of 116 data review comments product, from the results of the study can be concluded that one of the products of Spatuafa named high heels women know the Ribbon Ikat FX18 the condition of the product is not good enough due to the high negative comments compared to positive comments
PENINGKATAN KEMAMPUAN MENULIS PROPOSAL PPK ORMAWA MELALUI PELATIHAN BAGI ANGGOTA UKM INTERMEDIA UNIVERSITAS AMIKOM PURWOKERTO Baihaqi, Wiga Maulana; Salsabila, Sabita; Khafid, Anas Nur; Zahrani, Aura Arnelia
Amaliah: Jurnal Pengabdian Kepada Masyarakat Vol 8 No 2 (2024): Amaliah Jurnal: Pengabdian kepada Masyarakat
Publisher : LPPI UMN AL WASHLIYAH

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Permasalahan yang dihadapi oleh UKM Intermedia Universitas Amikom Purwokerto adalah kurangnya kemampuan dalam menyusun proposal sesuai dengan standar Program Penguatan Kapasitas Organisasi Kemahasiswaan (PPK Ormawa). Hal ini menyebabkan UKM Intermedia tidak mendapatkan pendanaan selama dua tahun terakhir. Tujuan dari kegiatan pengabdian ini adalah memberikan pelatihan penulisan proposal yang kompetitif dan berkualitas kepada anggota UKM. Pelatihan dilaksanakan dalam dua sesi: sesi pertama menghadirkan pembicara internasional yang membahas teknik penulisan latar belakang proposal dengan fokus pada identifikasi gap, sedangkan sesi kedua dipandu oleh dosen Universitas Amikom Purwokerto yang menekankan penggalian ide program untuk proposal PPK Ormawa. Berdasarkan hasil kuesioner sesi pertama, 57,1% peserta menyatakan memahami materi dengan baik (skor 4), sementara 35,7% memberikan skor tertinggi (skor 5). Secara keseluruhan, 80% peserta berhasil mengimplementasikan materi dalam bentuk draft proposal, dan 71,4% peserta menyatakan minat untuk bergabung dengan Tim PPK Ormawa setelah pelatihan. Kesimpulannya, pelatihan ini berhasil meningkatkan pemahaman dan motivasi peserta dalam menyusun proposal yang lebih kompetitif dan inovatif sesuai dengan kebutuhan masyarakat.
Analisis Kesehatan Mental untuk Mencegah Gangguan Mental pada Mahasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Random Forest: Mental Health Analysis to Prevent Mental Disorders in Students Using The K-Nearest Neighbor (K-NN) Algorithm and Random Forest Algorithm Nurdiansyah, Najib; Febriyan, Farhan Sulis; Amanta, Zanuar Gesit Dian; Saputra, Dicky Arya; Baihaqi, Wiga Maulana
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 1 (2025): MALCOM January 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i1.1537

Abstract

Pada era modern, gangguan mental menjadi masalah kesehatan global. Organisasi Kesehatan Dunia (WHO) memperkirakan bahwa satu dari empat orang di seluruh dunia mengalami gangguan mental atau neurologis. Gangguan sering terjadi pada pelajar yang salah satunya adalah mahasiswa.  Kesehatan mental mahasiswa, yang akan menjadi generasi penerus bangsa, sangat penting untuk keberhasilan mereka di bidang akademis ataupun non akademis dan peran mereka di masyarakat di masa depan. Dengan menggunakan algoritma K-Nearest Neighbor (K-NN) dan Randon Forest, penelitian ini bertujuan untuk menganalisis kesehatan mental untuk mencegah gangguan mental pada siswa. Dataset "Student mental health.csv" digunakan, yang diambil dari situs web Kaggle yang mencakup berbagai variabel terkait kesehatan siswa. Proses yang digunakan termasuk analisis data eksploratif, preprocessing data, modeling data menggunakan algoritma K-Nearest Neighbor (K-NN) dan Random Forest , dan akhirnya evaluasi. Hasil menunjukkan bahwa K-NN memiliki akurasi sebesar 90% pada splitting data 80:20, sedangkan Random Forest memiliki akurasi sebesar 85% pada splitting data yang sama. Namun, pada splitting data 70:30, kinerja K-NN turun menjadi 83%, sebanding dengan akurasi Random Forest 83% pada splitting data yang sama. Penelitian ini menyimpulkan bahwa, dalam beberapa kasus, algoritma K-NN menunjukkan akurasi yang sedikit lebih baik, sementara Random Forest menunjukkan kinerja yang lebih konsisten dalam berbagai pembagian data. 
Comparative Analysis of Openpuff and Openstego Tools Heryanti, Linda; Baihaqi, Wiga Maulana; Habibah, Ariska Nurul; Kusuma, Bagus Adhi
JINAV: Journal of Information and Visualization Vol. 5 No. 1 (2024)
Publisher : PT Mattawang Mediatama Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/454RI.jinav2327

Abstract

Steganography is the science and art of hiding information in a medium so that its existence is not detected by unauthorized parties. Media that can be used in steganography are text, images, audio, and video. However, the media that is often used is image. Various steganography tools have been developed with their respective strengths and weaknesses, such as Hide in Picture; Openstego; Image Steganography; Invisible Secret 4; S-Tools; Hide 'N' Send; Online Image Steganography, Openpuff, and others. Researchers carried out a comparative analysis of the steganography tools Openpuff and Openstego with test parameters for the quality of the images produced and time efficiency. Test the quality of the resulting image using MSE, PSNR, NCC, SSIM, and time-efficient testing seen from embedding and extraction time. Based on the research results, show that Openstego has better image quality and time efficiency compared to Openpuff. The type of image format used and the size of the embedded message can affect the quality of the resulting image and the time used. The best test results were obtained, namely MSE=0.0009, PSNR=78.5438 dB, NCC=0.999999, SSIM=0.999993, and required embedding time=0.075 second and extraction time=0.084 second. Keywords: Image Quality, Openpuff, Openstego, Steganography, Time.