Ery Burhandeny, Aji
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Image analysis for classifying coffee bean quality using a multi-feature and machine learning approach Septiarini, Anindita; Hamdani, Hamdani; Ery Burhandeny, Aji; Nurcahyono, Damar; Eka Priyatna, Surya
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4241-4248

Abstract

Price and customer satisfaction depend on coffee bean quality. The coffee industry must analyze coffee bean quality. Global demand for robusta coffee is high. Coffee industry professionals mostly understand coffee bean quality. Thus, an image analysis using a computer vision-based approach for classifying robusta coffee bean quality is required. Image acquisition, region of interest (ROI) detection, pre-processing, segmentation, feature extraction, feature selection, and classification are covered in this study. A multi-feature derived based on color, shape, and texture features was employed in feature extraction, followed by feature selection using principal component analysis (PCA). Several machine-learning methods classified the coffee beans. The method performance was assessed using precision, recall, and accuracy. The selected features using the backpropagation neural network (BPNN) classifier outperformed others with 98.54% accuracy.