Abas Sunarya, Po
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improving performance of air quality monitoring: a qualitative data analysis Manongga, Danny; Rahardja, Untung; Sembiring, Irwan; Aini, Qurotul; Abas Sunarya, Po
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp3793-3807

Abstract

This research aims to improve performance of air quality monitoring and understand the latest relevant technological developments. Employing the Kitchenham systematic literature review (SLR) method, the study examines 436 journal articles and conference proceedings published from 2019 to 2023, sourced from the Web of Science (WoS) and Scopus databases. The analysis was carried out using Leximancer 5.0 and identified research five themes; i) air quality, ii) artificial intelligence (AI), iii) pollution, iv) middleware, and v) smart environment. The results showed that only 48 journals had strict inclusion and exclusion criteria include relevance to the research theme, methodological quality, and contribution to the research field. In addition, this research integrates AI and middleware, which has significantly contributed to improving air quality. These findings can become the basis for the development of air quality monitoring technology that is more sophisticated and responsive to environmental needs. This research contributes to further understanding air quality monitoring technology trends and designing solutions to improve overall air quality.