M. Turab, Nidal
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Progression of polymeric nanostructured fibres for pharmaceutical applications Abu Owida, Hamza; I. Al-Nabulsi, Jamal; M. Turab, Nidal; Al-Ayyad, Muhammad; Alazaidah, Raed; Alshdaifat, Nawaf
Bulletin of Electrical Engineering and Informatics Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i1.7315

Abstract

Electrospinning has emerged as a simple and cost-effective technique for producing polymer nanofibers, offering a versatile approach for creating nanostructured fibers from a wide range of polymer materials. The pharmaceutical field has particularly welcomed the advent of electrospun nanofibers, as they hold immense potential for revolutionizing drug delivery systems. The recent surge of interest in electrospun nanofibers can be attributed to their unique characteristics, including elasticity and biocompatibility, which make them highly suitable for various biomedical applications. By incorporating functional ingredients into blends of nanostructured fibers, the capabilities and reliability of drug delivery devices have been significantly enhanced. This review aims to provide a comprehensive summary of recent research endeavors focusing on the concept of nanofibrous mesh and its multifaceted applications. With an emphasis on the simplicity of fabrication and the virtually limitless combinations of materials achievable through this approach, nanofibrous meshes hold the promise of transforming specific treatment modalities. By streamlining the delivery of therapeutic agents and offering enhanced control over drug release kinetics, nanofibrous meshes may herald a new era in targeted and personalized medicine.