Alshdaifat, Nawaf
Unknown Affiliation

Published : 13 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 13 Documents
Search

The performance of artificial intelligence in prostate magnetic resonance imaging screening Abu Owida, Hamza; R. Hassan, Mohammad; Ali, Ali Mohd; Alnaimat, Feras; Al Sharah, Ashraf; Abuowaida, Suhaila; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp2234-2241

Abstract

Prostate cancer is the predominant form of cancer observed in men worldwide. The application of magnetic resonance imaging (MRI) as a guidance tool for conducting biopsies has been established as a reliable and well-established approach in the diagnosis of prostate cancer. The diagnostic performance of MRI-guided prostate cancer diagnosis exhibits significant heterogeneity due to the intricate and multi-step nature of the diagnostic pathway. The development of artificial intelligence (AI) models, specifically through the utilization of machine learning techniques such as deep learning, is assuming an increasingly significant role in the field of radiology. In the realm of prostate MRI, a considerable body of literature has been dedicated to the development of various AI algorithms. These algorithms have been specifically designed for tasks such as prostate segmentation, lesion identification, and classification. The overarching objective of these endeavors is to enhance diagnostic performance and foster greater agreement among different observers within MRI scans for the prostate. This review article aims to provide a concise overview of the application of AI in the field of radiology, with a specific focus on its utilization in prostate MRI.
Optimizing intrusion detection in 5G networks using dimensionality reduction techniques Salah, Zaher; Elsoud, Esraa; Al-Sit, Waleed; Alhenawi, Esraa; Alshraiedeh, Fuad; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5652-5671

Abstract

The proliferation of internet of things (IoT) technologies has expanded the user base of the internet, but it has also exposed users to increased cyber threats. Intrusion detection systems (IDSs) play a vital role in safeguarding against cybercrimes by enabling early threat response. This research uniquely centers on the critical dimensionality aspects of wireless datasets. This study focuses on the intricate interplay between feature dimensionality and intrusion detection systems. We rely on the renowned IEEE 802.11 security-oriented AWID3 dataset to implement our experiments since AWID was the first dataset created from wireless network traffic and has been developed into AWID3 by capturing and studying traces of a wide variety of attacks sent into the IEEE 802.1X extensible authentication protocol (EAP) environment. This research unfolds in three distinct phases, each strategically designed to enhance the efficacy of our framework, using multi-nominal class, multi-numeric class, and binary class. The best accuracy achieved was 99% in the three phases, while the lowest accuracy was 89.1%, 60%, and 86.7% for the three phases consecutively. These results offer a comprehensive understanding of the intricate relationship between wireless dataset dimensionality and intrusion detection effectiveness.
Automated classification of brain tumor-based magnetic resonance imaging using deep learning approach Owida, Hamza Abu; AlMahadin, Ghayth; Al-Nabulsi, Jamal I.; Turab, Nidal; Abuowaida, Suhaila; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3150-3158

Abstract

The treatment of brain tumors poses significant challenges and contributes to a significant number of deaths on a global scale. The process of identifying brain tumors in medical practice involves the visual analysis of photographs by healthcare experts, who manually delineate the tumor locations. However, this approach is characterized by its time-consuming nature and susceptibility to errors. In recent years, scholars have put forth automated approaches to early detection of brain tumors. However, these techniques face challenges attributed to their limited precision and significant false-positive rates. There is a need for an effective methodology to identify and classify tumors, which involves extracting reliable features and achieving precise disease classification. This work presents a novel model architecture that is derived from the EfficientNetB3. The suggested framework has been trained and assessed on a dataset consisting of 7,023 magnetic resonance images. The findings of this study indicate that the fused feature vector exhibits superior performance compared to the individual vectors. Furthermore, the technique that was provided showed superior performance compared to the currently available systems and attained a 100% accuracy rate. As a result, it is viable to employ this technique within a clinical environment for the purpose of categorizing brain tumors based on magnetic resonance images scans.
Automated blood cancer detection models based on EfficientNet-B3 architecture and transfer learning Alshdaifat, Nawaf; Owida, Hamza Abu; Mustafa, Zaid; Aburomman, Ahmad; Abuowaida, Suhaila; Ibrahim, Abdullah; Alsharafat, Wafa
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1731-1738

Abstract

In blood smear images, there are difficulties in diagnosing blood cancer diseases like leukemia and lymphoma because of their various forms that appear in the human body. In this paper, a method for automatic detection of blood cancer is suggested that uses the EfficientNet-B3 architecture along with transfer learning techniques to improve accuracy and efficiency. We first fine-tuned the EfficientNet-B3 model, which was pre-trained on a large dataset consisting of annotated blood smear images, to capture pertinent features linked with blood malignant cells. To expedite the training process and adapt the model to our task, we use transfer learning. The proposed approach’s results from our experiments show that it outperforms traditional deep learning models and state-of-the-art methods in blood cancer detection. Additionally, with high precision and recall rates, this model also detects different types of blood cancers with robustness in its performance since its accuracy is over 99%. This means that when used together with the EfficientNet-B3 architecture, transfer learning can help the developed methods generalize among different types of blood cancers and conditions.
Improved deep learning architecture for skin cancer classification Owida, Hamza Abu; Alshdaifat, Nawaf; Almaghthawi, Ahmed; Abuowaida, Suhaila; Aburomman, Ahmad; Al-Momani, Adai; Arabiat, Mohammad; Chan, Huah Yong
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp501-508

Abstract

A leading cause of mortality globally, skin cancer is deadly. Early skin cancer diagnosis reduces mortality. Visual inspection is the main skin cancer diagnosis tool; however, it is imprecise. Researchers propose deep-learning techniques to assist physicians identify skin tumors fast and correctly. Deep convolutional neural networks (CNNs) can identify distinct objects in complex tasks. We train a CNN on photos with merely pixels and illness labels to classify skin lesions. We train on HAM-10000 using a CNN. On the HAM10000 dataset, the suggested model scored 95.23% efficiency, 95.30% sensitivity, and 95.91% specificity.
Arabic fake news detection using hybrid contextual features Turki, Hussain Mohammed; Daoud, Essam Al; Samara, Ghassan; Alazaidah, Raed; Qasem, Mais Haj; Aljaidi, Mohammad; Abuowaida, Suhaila; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp836-845

Abstract

Technology has advanced and social media users have grown dramatically in the last decade. Because social media makes information easily accessible, some people or organizations distribute false news for political or commercial gain. This news may influence elections and attitudes. Even though English fake news is widely detected and limited, Arabic fake news is hard to recognize owing to a lack of study and data collection. Wara Arabic bidirectional encoder representations from transformers (WaraBERT), a hybrid feature extraction approach, combines word level tokenization with two Arabic bidirectional encoder representations from transformers (AraBERT) variants to provide varied features. The study also discusses eliminating stopwords, punctuations, and tanween markings from Arabic data. This study employed two datasets. The first, Arabic fake news dataset (AFND), has 606,912 records. Second dataset Arabic news (AraNews) has 123,219 entries. WaraBERT-V1 obtained 93.83% AFND accuracy using the bidirectional long short-term memory (BiLSTM) model. However, the WaraBERT-V2 technique obtained 81.25%, improving detection accuracy above previous researchers for the AraNews dataset. These findings show that WaraBERT outperforms word list techniques (WLT), term frequency-inverse document frequency (TF-IDF), and AraBERT on both datasets.
Perspective on the applications of terahertz imaging in skin cancer diagnosis Owida, Hamza Abu; Al-Nabulsi, Jamal I.; Al-Ayyad, Muhammad; Turab, Nidal; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1242-1250

Abstract

Applications of terahertz (THz) imaging technologies have advanced significantly in the disciplines of biology, medical diagnostics, and non- destructive testing in the past several decades. Significant progress has been made in THz biomedical imaging, allowing for the label-free diagnosis of malignant tumors. Terahertz frequencies, which lie between those of the microwave and infrared, are highly sensitive to water concentration and are significantly muted by water. Terahertz radiation does not cause ionization of biological tissues because of its low photon energy. Recently, terahertz spectra, including spectroscopic investigations of cancer, have been reported at an increasing rate due to the growing interest in their biological applications sparked by these unique features. To improve cancer diagnosis with terahertz imaging, an appropriate differentiation technique is required to increased blood supply and localized rise in tissue water content that commonly accompany the presence of malignancy. Terahertz imaging has been found to benefit from structural alterations in afflicted tissues. This study provides an overview of terahertz technology and briefly discusses the use of terahertz imaging techniques in the detection of skin cancer. Research into the promise and perils of terahertz imaging will also be discussed.
Narrative review of the literature: application of mechanical self powered sensors for continuous surveillance of heart functions Owida, Hamza Abu; Al-Nabulsi, Jamal I.; Turab, Nidal; Al-Ayyad, Muhammad; Al Hawamdeh, Nour; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp243-251

Abstract

Cardiovascular disease consistently occupies a prominent position among the leading global causes of mortality. Continuous and real-time monitoring of cardiovascular signs over an extended duration is necessary to identify irregularities and prompt timely intervention. Due to this reason, researchers have invested heavily in developing adaptive sensors that may be worn or implanted and continuously monitor numerous vital physiological characteristics. Mechanical sensors represent a category of devices capable of precisely capturing the temporal variations in pressure within the heart and arteries. Mechanical sensors possess inherent advantages such as exceptional precision and a wide range of adaptability. This article examines four distinct mechanical sensor technologies that rely on capacitive, piezoresistive, piezoelectric, and triboelectric principles. These technologies show great potential as novel approaches for monitoring the cardiovascular system. The subsequent section provides a comprehensive analysis of the biomechanical components of the cardiovascular system, accompanied by an in-depth examination of the methods employed to monitor these intricate systems. These systems measure blood and endocardial pressure, pulse wave, and heart rhythm. Finally, we discuss the potential benefits of continuing health monitoring in vascular disease treatment and the challenges of integrating it into clinical settings.
Progression of polymeric nanostructured fibres for pharmaceutical applications Abu Owida, Hamza; I. Al-Nabulsi, Jamal; M. Turab, Nidal; Al-Ayyad, Muhammad; Alazaidah, Raed; Alshdaifat, Nawaf
Bulletin of Electrical Engineering and Informatics Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i1.7315

Abstract

Electrospinning has emerged as a simple and cost-effective technique for producing polymer nanofibers, offering a versatile approach for creating nanostructured fibers from a wide range of polymer materials. The pharmaceutical field has particularly welcomed the advent of electrospun nanofibers, as they hold immense potential for revolutionizing drug delivery systems. The recent surge of interest in electrospun nanofibers can be attributed to their unique characteristics, including elasticity and biocompatibility, which make them highly suitable for various biomedical applications. By incorporating functional ingredients into blends of nanostructured fibers, the capabilities and reliability of drug delivery devices have been significantly enhanced. This review aims to provide a comprehensive summary of recent research endeavors focusing on the concept of nanofibrous mesh and its multifaceted applications. With an emphasis on the simplicity of fabrication and the virtually limitless combinations of materials achievable through this approach, nanofibrous meshes hold the promise of transforming specific treatment modalities. By streamlining the delivery of therapeutic agents and offering enhanced control over drug release kinetics, nanofibrous meshes may herald a new era in targeted and personalized medicine.
Advancement in self-powered implantable medical systems Abu Owida, Hamza; Al-Nabulsi, Jamal; Turab, Nidal; Al-Ayyad, Muhammad; Al Hawamdeh, Nour; Alshdaifat, Nawaf
Bulletin of Electrical Engineering and Informatics Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i1.5881

Abstract

Many different elements of patient monitoring and treatment can be supported by implantable devices, which have proven to be extremely reliable and efficient in the medical profession. Medical professionals can use the data they collect to better diagnose and treat patients as a result. The devices’ power sources, on the other hand, are battery-based, which introduces a slew of issues. As part of this review, we explore the use of harvesters in implanted devices and evaluate various materials and procedures and look at how new and improved circuits can enable the harvesters to sustain medical devices.