Rifandi, Muh.
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Penerapan Metode Mind Mapping untuk Meningkatkan Hasil Belajar dan Aktifitas Siswa Asmaun, Asmaun; Talib, Ahmad; Rifandi, Muh.
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 8 No 3 (2024): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 8 Nomor 3 Tahun 2024
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v8i3.3552

Abstract

Rendahnya hasil belajar dan aktifitas siswa di sekolah salah satunya akibat dari kurang bervareasinya metode yang diajarkan guru dalam pembelajaran dan siswa belum memiliki cara mencatat materi yang menarik dan efisien untuk memahami pelajaran. Penelitian yang digunakan merupakan penelitian tindakan kelas, berlangsung di kelas VII SMP Negeri 5 Majene. Maksud serta tujuan yang ingin dicapai pada penelitian adalah meningkatkan ketuntasan hasil belajar siswa dan aktifitas siswa dalam kegiatan pembelajaran dengan penerapan metode Mind Mapping. Terdapat sebanyak 22 siswa perempuan dan 12 siswa laki-laki dari total 34 siswa yang menjadi subjek penelitian. Data penelitian dianalisis secara deskriptif kualitatif dan kuantitatif. Hasil yang didapatkan bahwa terjadi kenaikan pada rata-rata hasil belajar individu siswa, yaitu pada siklus pertama sebesar 50,47 dengan ketuntasan klasikal 29% atau hanya 10 siswa dari 34 siswa yang mencapai standar kelulusan. Sementara pada siklus kedua terjadi peningkatan rata-rata hasil belajar menjadi 71,51 dengan ketuntasan klasikal sebesar 80%. Begitupula pada aktivitas siswa juga terjadi kenaikan skor rata-rata yaitu pada siklus pertama sebesar 2,31 dengan klasifikasi cukup serta di siklus kedua terjadi kenaikan pada nilai 3,32 dengan klasifikasi baik. Jadi kesimpulan yang didapatkan pada penelitian adalah dengan penggunaan metode Mind Mapping dalam kegiatan belajar mengajar bisa menambah nilai ketuntasan hasil belajar dan skor aktifitas siswa.
Deskripsi Kesalahan Mahasiswa dalam Menyelesaikan Soal Geometri Analitik Menurut Teori Newman Ditinjau dari Kemampuan Matematika Asmaun, Asmaun; Arwadi, Fajar; Rifandi, Muh.
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 2 (2025): Innovasi dalam Matematika dan Pembelajarannya
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i2.5467

Abstract

Analytical geometry as a course that involves algebraic processes in solving problems requires students' accuracy and it is not uncommon for various errors to occur due to the varying levels of students' mathematical abilities. This study aims to describe students' errors in solving Analytical Geometry problems according to Newman's theory as viewed from their mathematical abilities. This research is a qualitative study with a descriptive approach. This research was conducted at the Mathematics Department, Faculty of Mathematics and Natural Sciences, Makassar State University in the even semester of 2023/2024. The subjects in this study were students of the Mathematics Department consisting of 3 people, namely students with high mathematical abilities, students with moderate mathematical abilities, and students with low mathematical abilities. The sampling technique used was purposive sampling by setting criteria for selecting research subjects. Data were collected through written tests and interviews. As well as data analysis techniques used qualitatively by collecting data, presenting data and drawing conclusions. The results obtained in this study were that the errors made by students with high mathematical abilities only made mistakes in the reading and endcoding processes, while at other stages according to Newman's theory, students did not make mistakes and were able to get the correct answers. Students with moderate mathematical abilities make reading errors, comprehension errors, transformation errors, process skill errors and endcoding errors. Students with low mathematical abilities make errors at every stage, at the reading stage, students also do not understand the meaning of the question (comprehension) so that students are unable to use the correct notation (transformationi) and ultimately are unable to continue the solution process.
Deskripsi Kesalahan Mahasiswa dalam Menyelesaikan Soal Geometri Analitik Menurut Teori Newman Ditinjau dari Kemampuan Matematika Asmaun, Asmaun; Arwadi, Fajar; Rifandi, Muh.
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 2 (2025): Innovasi dalam Matematika dan Pembelajarannya
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i2.5467

Abstract

Analytical geometry as a course that involves algebraic processes in solving problems requires students' accuracy and it is not uncommon for various errors to occur due to the varying levels of students' mathematical abilities. This study aims to describe students' errors in solving Analytical Geometry problems according to Newman's theory as viewed from their mathematical abilities. This research is a qualitative study with a descriptive approach. This research was conducted at the Mathematics Department, Faculty of Mathematics and Natural Sciences, Makassar State University in the even semester of 2023/2024. The subjects in this study were students of the Mathematics Department consisting of 3 people, namely students with high mathematical abilities, students with moderate mathematical abilities, and students with low mathematical abilities. The sampling technique used was purposive sampling by setting criteria for selecting research subjects. Data were collected through written tests and interviews. As well as data analysis techniques used qualitatively by collecting data, presenting data and drawing conclusions. The results obtained in this study were that the errors made by students with high mathematical abilities only made mistakes in the reading and endcoding processes, while at other stages according to Newman's theory, students did not make mistakes and were able to get the correct answers. Students with moderate mathematical abilities make reading errors, comprehension errors, transformation errors, process skill errors and endcoding errors. Students with low mathematical abilities make errors at every stage, at the reading stage, students also do not understand the meaning of the question (comprehension) so that students are unable to use the correct notation (transformationi) and ultimately are unable to continue the solution process.