Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimized deposition parameters for titanium nitride coatings: Enhancing mechanical properties of Al 6011 substrates via DC sputtering Margono, Margono; Darmadi, Djarot Bangun; Gapsari, Femiana; Widodo, Teguh Dwi; Kozin, Muhammad; Puranto, Prabowo; Kamil, Muhammad Prisla; Fitriani, Diah Ayu; Azahra, Siti Amalina; Andriyanti, Wiwien
Mechanical Engineering for Society and Industry Vol 4 No 2 (2024)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.12266

Abstract

The growing demand for advanced coatings in industries such as aerospace and automotive necessitates materials with superior hardness, wear resistance, and thermal stability. Despite advancements in ternary coatings, research on binary Titanium Nitride (TiN) coatings remains limited, particularly in optimizing deposition parameters for lightweight aluminum substrates. This study aims to investigate the effects of sputtering parameters, specifically Ar:N₂ gas ratios and deposition durations, on the mechanical properties of TiN coatings on Al 6011 substrates. The optimized conditions (70Ar:30N₂ gas ratio and 60-minute deposition) yielded a 165% increase in surface hardness (88.92 HV) and a 54% reduction in wear rate compared to untreated samples. XRD and SEM analyses confirmed the dense microstructure and strong (200) phase orientation contributing to these enhancements. This research highlights a cost-effective and scalable approach to improving the performance of aluminum alloys, bridging the gap between fundamental studies and industrial applications.
Analysis of Aluminium Alloy 6061 Material Coating with the Addition of Malonic Acid Additive in the Plasma Electrolytic Oxidation Method to Improve Corrosion Resistance Properties Lubis, Muhammad Ihsan; Mutmainnah; Kamil, Muhammad Prisla; Suwondo, Kusuma Putri; Asriyani, Nur; Lantang, Jessica Valenthine
Journal of Energy, Material, and Instrumentation Technology Vol 6 No 3 (2025): Journal of Energy, Material, and Instrumentation Technology
Publisher : Departement of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jemit.335

Abstract

Aluminum alloy 6061 is extensively used in structural and engineering applications due to its favorable strength-to-weight ratio, good mechanical properties, and inherent corrosion resistance. However, it remains vulnerable to localized corrosion, especially in chloride-rich environments. This study investigates the effect of malonic acid (MA) as an organic additive in the Plasma Electrolytic Oxidation (PEO) process to enhance the corrosion resistance of aluminum alloy 6061. The experimental results indicate that the presence of MA reduces plasma initiation time, stabilizes discharge behavior, and facilitates the formation of a denser and more uniform oxide layer. Surface morphology analysis reveals that PEO coatings with MA exhibit finer porosity and a thicker structure, contributing to improved barrier properties. XRD characterization confirms the presence of stable crystalline phases such as mullite and andalusite in the MA-enhanced coatings. Electrochemical testing via Tafel polarization shows a significant reduction in corrosion current density (3.899 x 10-7 A/cm2) and corrosion rate (0.642 mm/year), alongside a more positive corrosion potential (-2.616 V) in the MA-treated samples. When compared to traditional corrosion inhibitors, both organic (for example, imidazole-based compounds) and inorganic (for example, CaCO3 and SiO2), the PEO plus MA method demonstrates superior long-term corrosion resistance and structural stability. These findings highlight the potential of malonic acid as an effective additive for optimizing the PEO process in demanding environmental conditions.