Claim Missing Document
Check
Articles

Found 2 Documents
Search

PREDIKSI RISIKO DEMAM BERDARAH MENGGUNAKAN DECISION TREE BERDASARKAN GEJALA KLINIS DAN DATA LABORATORIUM M. Fazlur Rahman Assauqi; Zaehol Fatah
JURNAL ILMIAH SAINS TEKNOLOGI DAN INFORMASI Vol. 2 No. 4 (2024): Oktober
Publisher : CV. ALIM'SPUBLISHING

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59024/jiti.v2i4.972

Abstract

Dengue Hemorrhagic Fever (DHF) is a disease caused by the Dengue virus and has a significant impact on public health, especially in tropical areas. Early diagnosis and prediction of DHF risk are essential to prevent complications and improve medical care. This study aims to develop a DHF risk prediction model using the Decision Tree method based on clinical symptoms and laboratory data. The data used include symptoms such as fever, joint pain, rash, and laboratory results such as platelet count and hematocrit. The Decision Tree model was chosen because of its ability to handle data with various variables and provide easy-to-understand interpretations. The research data were taken from patients diagnosed with DHF in several hospitals during a certain period. The dataset was then analyzed to find relevant patterns that could predict a high risk of DHF. The model training and testing process was carried out using cross-validation techniques to ensure prediction accuracy. The results showed that the Decision Tree model had an accuracy rate of 96.95% and consistent results from cross-validation which produced an average accuracy of 92.8%,, with good sensitivity and specificity in predicting DHF risk based on a combination of clinical symptoms and laboratory data. Factors such as low platelet count and fever symptoms lasting more than three days were found to be significant predictive variables. In conclusion, this Decision Tree model has the potential to be used as a tool in early prediction of DHF risk, which can help medical personnel in clinical decision making and patient management. Further development can be done by adding other variables such as epidemiological data to improve model performance.
Rancang Bangun Verifikasi Kehadiran Guru Menggunakan Face Recognition Dan Geo-Location Di SDN Wiroborang 1 M. Fazlur Rahman Assauqi; Adi Susanto; A. Hamdani
Jurnal Teknologi dan Manajemen Industri Terapan Vol. 4 No. 3 (2025): Jurnal Teknologi dan Manajemen Industri Terapan (in press)
Publisher : Yayasan Inovasi Kemajuan Intelektual

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55826/jtmit.v4i3.766

Abstract

Penelitian ini bertujuan merancang sistem verifikasi kehadiran guru berbasis web di SDN Wiroborang 1 dengan memanfaatkan teknologi Face Recognition dan Geo-Location. Sistem ini dikembangkan untuk meningkatkan akurasi pencatatan kehadiran dan meminimalkan potensi manipulasi data. Teknologi Face Recognition diterapkan menggunakan library face-api.js, yang mampu mendeteksi dan mengenali wajah pengguna secara langsung melalui kamera perangkat tanpa memerlukan perangkat keras tambahan. Sementara itu, fitur Geo-Location menggunakan library Leaflet untuk menampilkan dan mengelola posisi geografis guru secara real-time berdasarkan koordinat latitude dan longitude. Sistem hanya mencatat kehadiran jika wajah dan lokasi terverifikasi secara bersamaan. Data kehadiran yang terekam akan tersimpan otomatis dan dapat diakses oleh pihak sekolah untuk keperluan evaluasi. Hasil penelitian menunjukkan sistem ini mampu meningkatkan efisiensi dan transparansi proses absensi guru. Selain memperkuat manajemen kehadiran, penerapan sistem ini juga diharapkan mendorong kedisiplinan guru, sehingga dapat mendukung peningkatan kualitas pembelajaran di sekolah.