Claim Missing Document
Check
Articles

Found 3 Documents
Search

Study of Economic Growth in IKN based on Autoregressive and Distributed Lag Approach Amelia, Dita; Suliyanto, Suliyanto; Zah, Alfian Iqbal; Mutyaravica, Astrid
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 9, No 1 (2025): January
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v9i1.27513

Abstract

Indonesia's economy plays an important role in supporting national development and government policies in various sectors such as education, health, and infrastructure. In the first quarter of 2024, Indonesia's economy experienced an increase from the same period in 2022. East Kalimantan experienced significant growth supported by the mining sector, metal industry, and the National Capital City project. However, East Kalimantan is dependent on raw material exports and faces challenges in economic transformation. The government aims to increase exports of processed products to reduce poverty and unemployment. This study analyzes whether economic growth in IKN affects the economy of East Kalimantan, by considering inflation, CPI, export value, and GRDP. This study uses quantitative research methods using Autoregressive Distributed Lag (ARDL) with the advantage that it can be used in models with different levels of stationary and does not matter the number of samples with the data used is secondary data from BPS. The best model obtained is ARDL (3, 3, 4, 3, 4) based on the smallest AIC value which shows the long-term and short-term relationship. Economic growth, export value, and GRDP from the previous quarter affect growth negatively, while GRDP from the same period and the previous quarter affect growth positively. In the long run, export value and GDP significantly affect growth. These results provide insights for the government in managing East Kalimantan's growth, supporting sustainable development and SDG achievement. The results of this study are expected to be a reference for the central government to make policies related to factors that affect Economic Growth in the hope of increasing economic growth in East Kalimantan. 
FOREIGN EXCHANGE RATE PREDICTION OF INDONESIA'S LARGEST TRADING PARTNER BASED ON VECTOR ERROR CORRECTION MODEL Mardianto, M. Fariz Fadillah; Farizi, Muhammad Fikry Al; Permana, Made Riyo Ary; Zah, Alfian Iqbal; Pusporani, Elly
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 3 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss3pp1705-1718

Abstract

Foreign exchange rates from the currencies of trading partners are a critical element in the development of Indonesia's economic landscape. As an active country in international trade, Indonesia's economic health is highly dependent on trade partnerships, movements, and interactions of foreign exchange rates from Indonesia's main trading partners. To achieve economic stability, Bank Indonesia intervenes in the foreign exchange market to keep the Rupiah exchange rate within a reasonable range. Indonesia is committed to achieving several points in the Sustainable Development Goals (SDGs), such as point 17, which emphasizes partnerships, and point 8, which underlines inclusive and sustainable economic growth. This commitment is an important factor in Indonesia's economic development. Therefore, it is necessary to predict the exchange rate value of Indonesia's largest trading partners considering these SDG aspects. In this study, the Vector Error Correction Model (VECM) was used to predict the foreign exchange rate of Indonesia's largest trading partners. The data used in this study is secondary data obtained from the investing.com webpage, comprising weekly data from January 2021 to November 2023. The foreign exchange rates of Indonesia's largest trading partners have a cointegration relationship, indicating long-term relationships and similarities in movements. The best model identified is VECM (1), with a very accurate MAPE value of 3.29%. The Impulse Response Function (IRF) analysis shows that the Chinese Yuan responds variably to different currencies, stabilizing over time. Variance Decomposition reveals that short-term fluctuations in the Chinese Yuan are primarily influenced by itself (87.89%) and significantly by the Singapore Dollar, South Korean Won, and Taiwan Dollar. The Granger Causality Test indicates that the Philippine Peso influences 11 other exchange rates, refining the VECM model and improving prediction accuracy. Indonesia is expected to build economic collaborations that can help achieve economic stability.
Analisis Biplot pada Persebaran Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Menurut Lapangan Pekerjaan Utama dan Pendidikan Tertinggi yang Ditamatkan Zah, Alfian Iqbal; Sa’idah, Andini; Zuleika, Talitha; Syahfitri, Nabila; Amelia, Dita; Mardianto, M. Fariz Fadillah
Zeta - Math Journal Vol 8 No 1 (2023): Mei
Publisher : Universitas Islam Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31102/zeta.2023.8.1.16-22

Abstract

Angkatan kerja adalah mereka yang memiliki pekerjaan, atau sedang bekerja atau menganggur sementara karena beberapa alasan. Pertumbuhan angkatan kerja dipengaruhi oleh jumlah penduduk dan struktur demografi penduduk salah satunya tingkat pendidikan. Biplot adalah salah satu analisis dalam analisis multivariat untuk menggambarkan baris dan kolom yang terdapat dalam matriks serta menggambarkan hubungan antara objek dan variabel dalam grafik tunggal. Pada penelitian ini akan dilakukan analisis biplot pada data dari BPS yaitu penduduk berumur 15 tahun ke atas yang bekerja menurut lapangan pekerjaan utama yang terdiri 17 sektor dan pendidikan tertinggi yang ditamatkan per Februari 2022. Dari analisis yang telah dilakukan, dapat diketahui bahwa vektor peubah SLTP memiliki nilai keragaman paling besar dan vektor peubah universitas memiliki nilai keragaman paling kecil. Kemudian hubungan antara amatan berupa lapangan pekerjaan dan vektor peubah berupa tingkat pendidikan dapat dikelompokkan menjadi dua kelompok yang masing-masing kelompok terdiri dari pembagian 17 sektor lapangan kerja