Claim Missing Document
Check
Articles

Found 2 Documents
Search

Systematic Literature Review: Fintech dan Program Pemerintah dalam Permodalan UMKM: Inklusi atau Ilusi Santosa, Budi; Budiman, Ega; Simarmata, Yohanes; Kurniawan, David; Indriani, Yulia; Suryono, Ryan Randy
Jurnal Ekonomika Dan Bisnis (JEBS) Vol. 5 No. 1 (2025): Januari - Februari
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jebs.v5i1.2579

Abstract

Penelitian ini bertujuan untuk menganalisis peran teknologi keuangan (fintech) dan sumber permodalan lainnya dalam mendukung inklusi keuangan serta keberlanjutan usaha mikro, kecil, dan menengah (UMKM) di Indonesia. Dengan pendekatan systematic literature review (SLR), 10 studi primer dianalisis untuk mengevaluasi inklusivitas, efisiensi, dan keberlanjutan solusi pendanaan berbasis fintech. Hasil penelitian menunjukkan bahwa fintech secara signifikan meningkatkan inklusi keuangan UMKM dengan menyederhanakan akses pendanaan dan mengurangi hambatan prosedural. Namun, tantangan seperti rendahnya literasi keuangan dan adopsi teknologi masih menjadi kendala. Rekomendasi diberikan untuk meningkatkan akses UMKM terhadap pendanaan dan memperkuat literasi keuangan guna mendukung pertumbuhan yang berkelanjutan.
Komparasi Algoritma Random Forest dan Support Vector Machine dalam Memprediksi Risiko PMS Simarmata, Yohanes; Maylanda, Putri Oktaria; Susanto, Erliyan Redy
SWABUMI (Suara Wawasan Sukabumi): Ilmu Komputer, Manajemen, dan Sosial Vol 13, No 2 (2025): Volume 13 Nomor 2 Tahun 2025
Publisher : Universitas Bina Sarana Informatika Kota Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/swabumi.v13i2.25580

Abstract

Penyakit Menular Seksual (PMS) merupakan permasalahan kesehatan global yang memerlukan deteksi dini untuk pencegahan dan pengobatan yang lebih efektif. Studi ini membandingkan performa algoritma pembelajaran mesin, yaitu Random Forest dan Support Vector Machine (SVM), dalam memprediksi risiko PMS. Dataset yang digunakan mencakup variabel epidemiologis utama dan diklasifikasikan ke dalam dua kategori risiko. Hasil penelitian menunjukkan bahwa Random Forest memiliki akurasi tertinggi sebesar 99.87%, dengan keunggulan dalam menangani dataset tidak seimbang serta mengenali pola kompleks. Namun, model ini berisiko mengalami overfitting sehingga memerlukan tuning parameter dan validasi silang untuk meningkatkan generalisasi. Sementara itu, SVM memperoleh akurasi 97.96% dan lebih stabil dalam menangani data berdimensi tinggi, tetapi memiliki recall 0.91 untuk kelas risiko tinggi, yang menunjukkan adanya kasus yang tidak terdeteksi secara optimal. Penelitian ini menunjukkan bahwa pemilihan algoritma bergantung pada kebutuhan spesifik analisis: Random Forest unggul dalam akurasi tinggi, sedangkan SVM lebih seimbang dalam generalisasi data. Studi lebih lanjut disarankan untuk mengoptimalkan kinerja model melalui tuning hyperparameter dan teknik ensemble learning guna meningkatkan akurasi deteksi dini PMS.Keywords: Penyakit Menular Seksual, Machine Learning, Random Forest, Support Vector Machine, Prediksi Risiko.