Manongga, Daniel HF
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The object detection model uses combined extraction with KNN and RF classification Kurniati, Florentina Tatrin; Manongga, Daniel HF; Sembiring, Irwan; Wijono, Sutarto; Huizen, Roy Rudolf
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp436-445

Abstract

Object detection plays an important role in various fields. Developing detection models for 2D objects that experience rotation and texture variations is a challenge. In this research, the initial stage of the proposed model integrates the gray-level co-occurrence matrix (GLCM) and local binary patterns (LBP) texture feature extraction to obtain feature vectors. The next stage is classifying features using k-nearest neighbors (KNN) and random forest (RF), as well as voting ensemble (VE). System testing used a dataset of 4,437 2D images, the results for KNN accuracy were 92.7% and F1-score 92.5%, while RF performance was lower. Although GLCM features improve performance on both algorithms, KNN is more consistent. The VE approach provides the best performance with an accuracy of 93.9% and an F1-score of 93.8%, this shows the effectiveness of the ensemble technique in increasing object detection accuracy. This study contributes to the field of object detection with a new approach combining GLCM and LBP as feature vectors as well as VE for classification.
Object Classification Model Using Ensemble Learning with Gray-Level Co-Occurrence Matrix and Histogram Extraction Kurniati, Florentina Tatrin; Manongga, Daniel HF; Sediyono, Eko; Prasetyo, Sri Yulianto Joko; Huizen, Roy Rudolf
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26683

Abstract

In the field of object classification, identification based on object variations is a challenge in itself. Variations include shape, size, color, and texture, these can cause problems in recognizing and distinguishing objects accurately. The purpose of this research is to develop a classification method so that objects can be accurately identified. The proposed classification model uses Voting and Combined Classifier, with Random Forest, K-NN, Decision Tree, SVM, and Naive Bayes classification methods. The test results show that the voting method and Combined Classifier obtain quite good results with each of them, ensemble voting with an accuracy value of 92.4%, 78.6% precision, 95.2% recall, and 86.1% F1-score. While the combined classifier with an accuracy value of 99.3%, a precision of 97.6%, a recall of 100%, and a 98.8% F1-score. Based on the test results, it can be concluded that the use of the Combined Classifier and voting methods is proven to increase the accuracy value. The contribution of this research increases the effectiveness of the Ensemble Learning method, especially the voting ensemble method and the Combined Classifier in increasing the accuracy of object classification in image processing.