Agada, Alexander Iwodi
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Integration of Fuzzy 0/1 Knapsack Dynamic Programming and PROMETHEE Method for Vehicle Exhaust Emission Parametric Optimization and Selection in the Packing Industry Agada, Alexander Iwodi; Rajan, John; Jose, Swaminathan; Oke, Sunday Ayoola; Benrajesh, Pandiaraj; Oyetunji, Elkanah Olaosebikan; Adedeji, Kasali Aderinmoye
International Journal of Industrial Engineering and Engineering Management Vol. 6 No. 2 (2024)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v6i2.7689

Abstract

Packaging industries fabricate and transport products in wrapped, sealed, and cushioned containers and boxes on roads, often through fossil-fuelled vehicles that emit carbons. Thus, decarbonization and net zero emission drive are compelling for these vehicles. This paper proposes a robust green logistics interaction model for monitoring and reducing exhaust pipe emissions in an uncertain environment. It uses a hybrid method known as fuzzy-0/1-KDP-PROMETHEE (Fuzzy-0/1 Knapsack dynamic programming-Preference Ranking Organization Method for Enrichment Evaluation) approach to concurrently reduce uncertainty, optimize the capacity of the knapsack and establish the preferred option among the parameters of green logistic. Both PROMETHEE I and II were introduced and tested using logistics data from an Indian environment based on secondary data. The method works by first reducing the effect of uncertainty on the model outcomes. This was achieved by establishing the output space as the fuzzy state, creating fuzzy rules, and mapping degrees to rules. Then, the degrees are used to maximize, ensuring that the weighted sum is not greater than the capacity of the Knapsack. The outcome is then regarded as the element of the green logistics exhaust emission process. The results obtained from the analysis, using the replacement of fuzzy expert (triangular) with fuzzy extent (trapezoidal), fuzzy geometric mean (triangular), and fuzzy geometric mean (trapezoidal) reveal that the fuzzy-0/1-KDP-PROMETHEE method adequately represents the score obtained using the data set from the exhaust emissions.
Vehicle Exhausts Emission Pattern Decisions for Logistic Services and Packing Industries with Orthogonal Array-Based Rough Set Theory Agada, Alexander Iwodi; Oke, Sunday Ayoola; Rajan, John; Jose, Swaminathan; Benrajesh, Pandiaraj; Oyetunji, Elkanah Olaosebikan; Adedeji, Kasali Aderinmoye
International Journal of Industrial Engineering and Engineering Management Vol. 5 No. 2 (2023)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v5i2.7740

Abstract

Precise monitoring of vehicle emissions in green logistics, focusing on the contributions of vehicles from packing industries, is crucial for many issues. It helps to understand the total emissions and gain insights into the mechanism of vehicle-associated environmental concerns. Notwithstanding, a key issue when monitoring vehicle emissions is the effective discrimination problem for different patterns generated from the parameters. Data from the packing industry are available from distribution networks but its pattern cannot be discriminated. Given this background, this article presents a new method of the orthogonal array-based rough set to discern patterns of the parametric behaviors to monitor emissions from vehicle exhausts in the packing industry. The proposed method is based on an Indian logistics network and delivery system data, which was obtained from previous work in the literature. By setting controls on the parameters of the packing industry which includes revenue obtained, packing units sold, growth rate, carbon-dioxide equivalent, materials utilized, and quantity consumed, the method was able to discern the patterns of the parametric behavior. The orthogonal arrays, which are developed, form factors (parameters) and levels to ascertain a balanced and uniform analysis of the various groups of options. Indiscernibility and approximation concepts of fuzzy sets are then applied to arrive at the outcome. Unlike previous studies, this study eliminates the need for tracking data, assumptions, and external information to establish the set membership. However, it utilizes the available information within the data. The rough set analysis indicates that there are no discernable patterns or rules that distinguish between "Yes" and "No" decisions. The method of rough set illustrated in this work shows the feasibility of the approach in the Indian packing industry. The method is useful for the logistics manager and government agencies responsible for the control of vehicle-generated greenhouse emissions.