Claim Missing Document
Check
Articles

Found 1 Documents
Search

Performance of K-Nearest Neighbor Algorithm and C4.5 Algorithm in Classifying Citizens Eligible to Receive Direct Cash Assistance in Bandar Mahligai Village Chaliza Nur, Wan Amalia; Abdullah, Dahlan; Meiyanti, Rini
International Journal of Engineering, Science and Information Technology Vol 5, No 1 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i1.752

Abstract

Direct Cash Assistance, commonly called BLT, is one of the many programs the Indonesian government held to reduce the poverty rate of the Indonesian population. This study compares the KNN and C4.5 methods to determine the eligibility of residents eligible to receive Direct Cash Assistance in Bandar Mahligai Village. This study began with collecting resident data from the Bandar Mahligai village office. Then, the data obtained was taken into several attributes to be used in the classification process, namely the name of the head of the family, KK number, NIK, number of dependents, occupation, income, and monthly expenses. After the data is collected, the data will be classified using the KNN and C4.5 algorithms. There is a significant difference between the two algorithms in the classification process; the KNN algorithm by looking for the nearest neighbor data value, in this study, the K value = 9, while the C4.5 algorithm by building a decision tree from the attribute values taken based on resident data used as training data. The classification results of the two methods will be compared using a confusion matrix to obtain a higher accuracy technique. The results of testing using a confusion matrix for both algorithms are the accuracy produced by the KNN and C4.5 algorithms in classifying residents eligible for Direct Cash Assistance (BLT) of 90% in the system that has been built. The results of comparing the KNN and C4.5 algorithms for this study show that the KNN algorithm is better because the accuracy level reaches 90% in manual and system calculations. While the C4.5 method only gets 85% for the accuracy of its manual calculations, it receives an accuracy level of 90% in the system that has been built.