Claim Missing Document
Check
Articles

Found 2 Documents
Search

Erosive Wear Characteristics Analysis of High Chromium White Cast Iron using Finite Element Analysis (FEA) Purba, Riki Hendra; Deva Ihsan Khoirunas; James Julian; Fitri Wahyuni
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 7 Number 1 (2025)
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v7i1.7476

Abstract

Erosive wear often occurs on heavy machinery operating under extreme conditions. This research utilizes the Finite Element Analysis (FEA) method with the Cowper-Symonds strain rate model to analyze the erosion behavior of high-Cr cast iron (HCCI) under different impact angles and compare it to other materials of different characteristics, such as 6061-T6 Aluminium, GH4720Li Superalloy, and Stainless Steel 304 Annealed. A single particle erosion model was made for this study. The erodent particle size used is 0.7 mm in diameter, with the target material measuring 1 x 1 x 0.5 mm. The particle velocity is kept constant at 25 m/s. Based on the simulation results, it can be known that HCCI performs the best at every impact angle. Moreover, from the model's cross-section, it's evident that the material's stress concentration aligns with the direction of movement of the erodent particle. Therefore, it can be concluded that these factors, along with others such as contact time, plastic strain, and surface deformation lead to variations in surface mechanics.
Erosion Behavior of SKD11 Tool Steel Under Different Impact Angles and Particle Velocities: A Finite Element Analysis Study Deva Ihsan Khoirunas; Purba, Riki Hendra; Situmorang, Riky Stepanus; James Julian; Fitri Wahyuni; Elvi Armadani; Fathin Muhammad Mardhudhu
DINAMIS Vol. 13 No. 2 (2025): Dinamis : In Press
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The study utilizes the Single Particle Finite Element Analysis (FEA) method with a Cowper-Symonds Strain Rate Material Model to understand the response of SKD11 tool steel to erosion under varying impact angles and velocities. In this study, SiO₂ particles measuring 0.7 mm in diameter were selected as the erodent, while the target material, SKD11, was sized at 1x1x0,5 mm. The impact angle was varied at 30, 60, and 90 degrees, and the impact velocity was set at 25 and 50 m/s. The simulation results show that SKD11 performs best at lower impact angles. It was observed that as the impact angle increases, the erosion also increases significantly, particularly at 60 degrees. Different impact angles also resulted in different erosion mechanisms on the material's surface. The impact velocity further contributed to an increase in erosion, with material failure and material reduction occurring at 50 m/s.