Saputra, Rangga Apriliyanto
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pendekatan Numerik Gerak Kinematika Pendulum Ganda Saputra, Rangga Apriliyanto; Saefan, Joko; Siswanto, Joko
Lontar Physics Today Vol 3, No 3 (2024): November 2024
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/lpt.v3i3.21849

Abstract

Pendulum ganda merupakan sistem dinamika nonlinier yang menarik dalam fisika dan matematika karena perilakunya  kompleks dan peka terhadap kondisi awal. Tujuan utama dari penelitian ini adalah untuk menyelesaikan secara analitis persamaan gerak sistem pendulum ganda. Pada penelitian ini menggunakan pendekatan numerik untuk mempelajari kinematika bandul ganda dengan menggunakan metode Runge-Kutta orde keempat. Metode ini dipilih karena menawarkan keseimbangan yang baik antara akurasi dan efisiensi komputasi. Hasilnya menunjukkan bahwa pendekatan numerik memungkinkan kita untuk memvisualisasikan karakteristik perilaku kacau sistem pendulum ganda, mengungkapkan pola dinamis yang tidak dapat dijelaskan dengan pendekatan analitis tradisional. Studi ini memberikan wawasan baru mengenai aplikasi numerik untuk pemodelan fenomena fisik yang kompleks
Decomposition Model and Extension of Spring Pendulum Systems in the 21st Century: A Systematic Literature Review Saputra, Rangga Apriliyanto; Saefan, Joko; Siswanto, Joko
Jurnal Fisika Vol. 15 No. 2 (2025): Jurnal Fisika 15 (2) 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jf.v15i2.21764

Abstract

A spring pendulum is a mechanical system that describes the reciprocating motion of a mass suspended on a spring around an equilibrium point. The system consists of a spring with certain elasticity characteristics and a fulcrum to which the spring is attached. When the mass is pulled from its equilibrium position, the spring generates a restoring force proportional to the distance of displacement, inducing the mass to move periodically. Spring pendulum systems have seen frequent development in the design of mechanical systems that require high-precision vibration control. This study examines developments in system expansion and equation decomposition models of spring pendulums by conducting a Systematic Literature Review (SLR) of 36 pertinent articles from Scopus and Google Scholar (2000–2024). The main focus of the research lies on the expansion of the basic spring pendulum system through various modifications, which is the dominant topic in the review. The most popular technique for resolving the system's equations of motion is breaking down the equations using analytical mathematical formulations, particularly the Lagrangian method, which refers to the theoretical derivation of equations of motion through well-known mathematical frameworks like Lagrangian and Hamiltonian mechanics. The findings provide deep insights for the development of mathematical models as well as a comprehensive overview of the development of spring pendulum research. The implications of this research can contribute to innovations in engineering, physics, and other related disciplines.