Ramadhan, Aska
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

SENSITIVITY ANALYSIS OF HYPERPARAMETER IN SOLAR ENERGY PREDICTION MODEL USING GRADIENT BOOSTING METHOD Ramadhan, Aska; Sopha, Bertha Maya; Ridwan, Mohammad Kholid
ASEAN Journal of Systems Engineering Vol 9, No 1 (2025): ASEAN Journal of Systems Engineering
Publisher : Master in Systems Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajse.v9i1.78322

Abstract

Solar energy prediction is one alternative to handling unpredicted conditions of weather and solar radiation intensity. It could be the most important factor in achieving stability in electricity generation using solar energy resources. In making predictions, the use of machine learning models has been carried out by various methods, and in this study, the method used for the algorithm model is gradient boosting. In the modeling process using gradient boosting, several hyperparameter settings are needed. Hyperparameters have an important role in producing stable predictive patterns and can avoid overfitting or underfitting conditions. In this study, the accuracy and speed of prediction of the machine learning model with the gradient boosting approach, namely XGBoost and LightGBM, were analyzed in relation to setting the hyperparameter learning rate and max depth of the model's prediction pattern. The dataset used spans 6 months at a data resolution rate of every 5 minutes and includes meteorological data at the location point of Energy Laboratory UKRIM Yogyakarta as well as the output value of PLTS power and temperature panels onsite. Setting the hyperparameter learning rate in the highest and lowest conditions generates accuracy values with a difference of 2% and about the same prediction speed. With nMAE values of 2.84% and 1.35% and nRMSE values of 6.11% and 3.68%, respectively, the higher learning rate results in lower error values for both models. The XGBoost model shown tendency for overfitting and slower prediction speeds with the highest max depth setting. The prediction speed is faster at the lowest max depth condition, but the XGBoost and LightGBM models both exhibit underfitting.
Analisis Praktik Penafsiran Sayyid Quthb Dan Wahbah Az-Zuhaili Pada Surah At-Taubah Ayat 103 Ramadhan, Aska
Jurnal Kajian Islam dan Sosial Keagamaan Vol. 3 No. 2 (2025): Oktober - Desember
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tulisan ini bertujuan untuk mengkaji praktik penafsiran yang dilakukan oleh Sayyid Quthb dan Wahbah Az-Zuhaili terhadap surah At-Taubah ayat 103. Metode yang digunakan dalam penelitian ini adalah kajian kepustakaan (library research) dengan menggunakan kitab Tafsir Fizilalil Al-Qur`an dan Tafsir Al-Munir sebagai sumber primer. Hasil penelitian ini menunjukkan bahwa dalam melakukan praktek penafsiran terhadap surah At-Taubah ayat 103, Sayyid Quthb dan Wahbah Az-Zuhaili memiliki pandangan yang berbeda. Sayyid Quthb cenderung mengemukakan karakterisktik seni, kemudian gaya yang dipakai Al-Qur`an dengan gaya yang khas dan singkat. Sedangkan Wahbah Az-Zuhaili dalam penafsiran ayat ini dengan luas dan terperinci dan juga memunculkan aspek fikh dan hukum-hukum terlebih surah At-Taubah 103 ini membahas tentang zakat. Walapun demikian tetap memberikan perhatian khusus kepada aspek balaghaah, (kebahasaan), (qiraat).