Hamid, Rahayu A
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

DETECTION OF BULLYING CONTENT IN ONLINE NEWS USING A COMBINATION OF RoBERTa-BiLSTM Zamroni, Moh. Rosidi; Hamid, Rahayu A; Mujilahwati, Siti; Sholihin, Miftahus; Leksana, Dinar Mahdalena
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 1 (2025): JUTIF Volume 6, Number 1, February 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.1.4140

Abstract

This research aims to build a bullying-themed online news classification system with a combined approach of RoBERTa embedding and BiLSTM. RoBERTa is used to generate context-rich text representations, while BiLSTM captures temporal relationships between words, thereby improving classification performance. The research dataset consisted of news from reputable portals such as Kompas.com, Detik.com, and iNews.com, labeled according to keywords relevant to the theme of bullying. The results of the experiment showed that the model achieved 95.2% accuracy, 98.2% precision, 93.6% recall, and 95.8% F1-score. Although there are few prediction errors (false positives and false negatives), this model shows excellent performance in detecting and classifying bullying-themed news. The main contribution of this research is the development of a new approach that combines RoBERTa and BiLSTM for the classification of complex bullying-themed news. This approach not only improves the accuracy of classification but can also be implemented in automated systems to detect negative content. Thus, this research has the potential to support the creation of a healthier digital space and encourage more responsible media practices.
A Comparative Study of Image Retrieval Algorithm in Medical Imaging Abdullah, Yang Muhammad Putra; Bakar, Suraya Abu; Hj Wan Yussof, Wan Nural Jawahir; Hamzah, Raseeda; Hamid, Rahayu A; Satria, Deni
JOIV : International Journal on Informatics Visualization Vol 8, No 3-2 (2024): IT for Global Goals: Building a Sustainable Tomorrow
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3-2.3447

Abstract

In recent times, digital environments have become more complex, and the need for secure, efficient, and reliable identification systems is growing in demand. Consequently, image retrieval has emerged as a critical area focusing on artificial intelligence and machine learning applications. Medical image retrieval has become increasingly crucial in today's healthcare field, as it involves accurate diagnostics, treatment planning, and advanced medical research. As the quantity of medical imaging data grows rapidly, the ability to efficiently and accurately retrieve relevant images from extensive datasets becomes critical. Advanced retrieval systems, such as content-based image retrieval, are imperative for managing complex data, ensuring that healthcare professionals can access the most relevant information to improve patient outcomes and advance medical knowledge. This paper compares three algorithms: Scale Invariant Feature Transform, Speeded Robust Features, and Convolutional Neural Networks in the context of two medical image datasets, ImageCLEF and Unifesp. The findings highlight the trade-offs between precision and recall for each algorithm, providing invaluable insights into selecting the most suitable algorithm for specific tasks. The study evaluates the algorithms based on precision and recall, two critical performance metrics in image retrieval.