Ermy Pily, Annisa Khoirala
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Komparasi Algoritma K-Nearest Neighbors dan Naïve Bayes dalam Klasifikasi Penyakit Diabetes Gestasional Ermy Pily, Annisa Khoirala; Oktavianda; Aprilia, Fanesa; Rahmaddeni; Efrizoni, Lusiana
The Indonesian Journal of Computer Science Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i1.3714

Abstract

Diabetes merupakan penyakit metabolik dengan gejala hiperglikemia akibat gangguan sekresi insulin dan aksi insulin. Diabetes gestasional adalah gangguan toleransi glukosa pada wanita hamil. Saat kehamilan, plasenta menghasilkan hormon baru seperti human placental lactogen (HPL), hormon estrogen, dan hormon peningkat resistensi insulin. Gejala diabetes gestasional tidak selalu mudah dikenali, dan seringkali penderitanya mengalami gejala awal secara tidak sadar. Penelitian ini bertujuan untuk membandingkan performa dua algoritma yaitu K-NN dan Naïve Bayes dengan Feature Selection dalam mengklasifikasikan penderita diabetes gestasional. Hasil error terendah dari feature selection dengan iterasi K=4, memperoleh MAE 0.317, MSE 0.142, dan RMSE 0.377. Hasil akurasi pada model KNN dengan K=5 , tanpa Feature Selection sebesar 80% dan K-NN dengan Feature Selection sebesar 77%. Sementara itu, Naïve Bayes tanpa Feature Selection sebesar 77% dan Naïve Bayes dengan Feature Selection sebesar 80%. Dari hasil tersebut K-NN tanpa Feature Selection dan Naïve Bayes dengan Feature Selection mendapatkan hasil yang lebih baik.
Komparasi K-Means Clustering dengan Euclidean dan Cosine Similarity untuk Segmentasi dan Rekomendasi Produk pada Data E-Commerce Ermy Pily, Annisa Khoirala; Susanti; Rio, Unang; Tashid
The Indonesian Journal of Computer Science Vol. 14 No. 2 (2025): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v14i2.4713

Abstract

Segmentasi pelanggan dan sistem rekomendasi berperan penting dalam meningkatkan pengalaman pengguna dan efektivitas analisis perilaku pelanggan. Penelitian ini membandingkan K-Means Clustering dengan Euclidean Distance dan Cosine Similarity untuk segmentasi pelanggan. Hasil evaluasi menunjukkan K-Means dengan Cosine Similarity lebih unggul, dengan Silhouette Score 0.6918, Calinski-Harabasz Score 3016.781, dan Davies-Bouldin Score 0.951, dibandingkan dengan 0.2363, 1257.178, dan 1.368 pada Euclidean. Clustering diterapkan pada sistem rekomendasi hybrid yang menggabungkan CBF, CF, dan CBPR. Hasil eksperimen menunjukkan bahwa hybrid recommendation dengan bobot CF 0.3, CBF 0.5, dan CBPR 0.2 menghasilkan Precision 0.8266, Recall 0.6198, NDCG 0.9964, dan Hit Ratio 0.9964. Penelitian ini menyimpulkan bahwa K-Means dengan Cosine Similarity lebih efektif dalam membentuk klaster pelanggan, sementara hybrid recommendation dengan bobot CF 0.3, CBF 0.5, dan CBPR 0.2 meningkatkan kualitas rekomendasi secara lebih relevan dan terstruktur.