Abdullah, Mohamad Nazir
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analysis and implementation of peak armature current (Imax) of a chopper-fed DC-DC motor drive in DCM Abdullah, Mohamad Nazir; Mohamed Hariri, Muhammad Hafeez; Mat Desa, Mohd Khairunaz; Mamat, Mohd Nadzri; Kaharuddin, Suardi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp96-105

Abstract

At low frequencies of operation in a chopper-fed direct current (DC) motor drive, the armature current may become discontinuous thus the controller operates in discontinuous conduction mode (DCM). Since the minimum armature current is zero in DCM, the analysis of peak armature current (Imax) is to investigate the ripple content in armature current at different values of duty cycle which will help in decreasing the peaky current of DC motor during operation. The simulation was carried out using MATLAB-Simulink software and the laboratory setup was based on Atmega 328 microcontroller board. In this paper, the theoretical and experimental analysis of peak armature current were performed at fix low frequency in DCM and variable duty cycles to provide full control of DC motor speed. The results show that the peak armature current changes with the change of duty cycles and its magnitude is decreased almost 50% at higher duty cycle values.
Rounding function-based zero crossing detection for a sensorless BLDC motor control Gujja, Musa Mohammed; Ishak, Dahaman; Hamidi, Muhammad Najwan; Salem, Mohamed; Abdullah, Mohamad Nazir; Alluhaybi, Khalil
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp106-116

Abstract

Permanent magnet brushless DC (PMBLDC) motors are favored for their low maintenance, high reliability, and efficiency, making them ideal for industrial, domestic, military, aerospace, and robotics applications. Sensor less control is the most preferred technique for PMBLDC motors due to its reliability and cost-effectiveness, eliminating the need for physical sensors. A crucial aspect of sensor less control is accurately detecting the point of zero crossing of the back electromotive force (BEMF) signals. Traditional methods, such as rotor position estimation, input observers, and AI-based strategies, can suffer from high ripples and computational inefficiencies. This paper introduces an approach using the rounding function to determine the point of zero crossing, aiming to enhance precision and reduce computational overhead. The rounding function converts continuous BEMF signals into discrete signals, minimizing ripples and facilitating accurate zero-crossing detection. This method improves detection accuracy while simplifying computation demands. Validation was performed through a MATLAB Simulink simulation and an experiment using the F28379D microcontroller, gate driver, and a six-switch inverter. The results demonstrate the effectiveness of the proposed approach, showing agreement between experimental and simulation outcomes.