Claim Missing Document
Check
Articles

Found 2 Documents
Search

Battery management system using Jaya maximum power point tracking technique Azmi, Muhammad Hasbi; Abdul Rashid, Ayman Nurshazwan; Mohammad Noor, Siti Zaliha; Othman, Muhammad Murtadha; Musa, Suleiman; Abd Aziz, Pusparini Dewi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp622-632

Abstract

This paper introduces the development of a battery management system (BMS) utilizing the Jaya-based maximum power point tracking (MPPT) technique. Previous studies have combined various MPPT techniques with switching methods, each having its pros and cons. Traditional MPPT methods are common but have limited performance. Therefore, artificial intelligence (AI)-based approaches are introduced to enhance and reduce the limitations faced. The Jaya technique is straightforward and easy to implement, making it an attractive choice for MPPT in photovoltaic systems. It is recognized for its effectiveness in eliminating the worst solutions and identifying the best solution with only a few control parameters required for operation. The proposed work aims to develop a BMS using a DC-DC buck converter and the Jaya MPPT technique. The objective is to find the MPP to achieve the desired performance level and ensure the effectiveness of maintaining battery quality, preventing overcharging or undercharging. The system is modeled in MATLAB/Simulink. The findings indicate that the Jaya MPPT demonstrates a tracking speed of less than 1 second to locate the maximum power point (MPP). Furthermore, the BMS is capable of monitoring changes in state of charge (SoC) to determine whether the system is in charging or discharging mode.
Performance improvement of harmonic detection algorithm in three phase three wire shunt active power filter under balance voltage condition Usman, Zubairu; Azmi, Muhammad Hasbi; Mohammad Noor, Siti Zaliha; Musa, Suleiman
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp380-388

Abstract

Effective harmonic current identification is critical for shunt active power filters (SAPF) to provide accurate and sufficient compensation. This study proposes a modified synchronous reference frame fundamental (MSRFF) method for harmonic extraction in three-phase, three-wire systems. A band pass filter (BPF) was designed by combining low-pass and high-pass filters in the direct-quadrature (d-q) reference frame to improve filtering performance. Unlike traditional methods using phase-locked loops (PLL), this approach employs unit vector templates for synchronization and relies on direct current measurements from load currents. The band pass filter, with low cutoff frequencies, effectively isolates harmonic components in heavily contaminated systems, outperforming other filtering methods. System performance was evaluated using matrix laboratory (MATLAB) simulations, where total harmonic distortion (THD) values were reduced to 2.19% with a low pass filter, 0.99% with a conventional band pass filter, and 0.98% with the combined filter approach. The results demonstrate that the proposed strategy can accurately track and estimate harmonic signals, offering a robust solution for shunt active power filter applications.