Othman, Muhammad Murtadha
Unknown Affiliation

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Metaheuristics-based maximum power point tracking for PV systems: a review Jamhari, Muhammad Khairul Azman Mohd; Hashim, Norazlan; Othman, Muhammad Murtadha; Abidin, Ahmad Farid Bin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 14, No 4: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v14.i4.pp2495-2513

Abstract

Over the years, numerous maximum power point tracking (MPPT) methods have been developed to extract the maximum available power from PV arrays. They are generally categorized as conventional or metaheuristic methods. The most employed conventional methods include perturb and observe (P&O), hill climbing (HC), and incremental conductance (INC), due to their simplicity and ease of implementation. However, under partial shading condition (PSC), none of them can effectively locate a global maximum power point (GMPP) out of many local maximum power points (LMPPs). This results in significant power loss during PSC, prompting the development of various metaheuristic-based MPPT methods to address the problem. This paper reviews 38 existing metaheuristic-based MPPTs and 27 metaheuristic methods that have not yet been applied to any MPPT operation up to date. Metaphorically, these methods are divided into four categories: (i) evolutionary-based, (ii) physics-based, (iii) swarm-based, and (iv) human-based. The different MPPTs are compared in terms of complexity, converter topology, and PSC tracking capability. This paper is intended to serve as a one-stop resource for any researcher, practitioner, or advanced student seeking to develop a new metaheuristic-based MPPT method.
Battery management system using Jaya maximum power point tracking technique Azmi, Muhammad Hasbi; Abdul Rashid, Ayman Nurshazwan; Mohammad Noor, Siti Zaliha; Othman, Muhammad Murtadha; Musa, Suleiman; Abd Aziz, Pusparini Dewi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp622-632

Abstract

This paper introduces the development of a battery management system (BMS) utilizing the Jaya-based maximum power point tracking (MPPT) technique. Previous studies have combined various MPPT techniques with switching methods, each having its pros and cons. Traditional MPPT methods are common but have limited performance. Therefore, artificial intelligence (AI)-based approaches are introduced to enhance and reduce the limitations faced. The Jaya technique is straightforward and easy to implement, making it an attractive choice for MPPT in photovoltaic systems. It is recognized for its effectiveness in eliminating the worst solutions and identifying the best solution with only a few control parameters required for operation. The proposed work aims to develop a BMS using a DC-DC buck converter and the Jaya MPPT technique. The objective is to find the MPP to achieve the desired performance level and ensure the effectiveness of maintaining battery quality, preventing overcharging or undercharging. The system is modeled in MATLAB/Simulink. The findings indicate that the Jaya MPPT demonstrates a tracking speed of less than 1 second to locate the maximum power point (MPP). Furthermore, the BMS is capable of monitoring changes in state of charge (SoC) to determine whether the system is in charging or discharging mode.
Simulation and verification of improved particle swarm optimization for maximum power point tracking in photovoltaic systems under dynamic environmental conditions Mohd Jamhari, Muhammad Khairul Azman; Hashim, Norazlan; Baharom, Rahimi; Othman, Muhammad Murtadha
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp608-621

Abstract

This paper introduces an improved particle swarm optimization (iPSO) algorithm designed for maximum power point tracking (MPPT) in photovoltaic (PV) systems. The proposed algorithm incorporates a novel reinitialization mechanism that dynamically detects and adapts to environmental changes. Additionally, an exponentially decreasing inertia weight is utilized to balance exploration and exploitation, ensuring rapid convergence to the global maximum power point (GMPP). A deterministic initialization strategy is employed to uniformly distribute particles across the search space, thereby increasing the likelihood of identifying the GMPP. The iPSO algorithm is thoroughly evaluated using a MATLAB/Simulink simulation and validated with real-time hardware, including a boost DC-DC converter, dSPACE, and a Chroma PV simulator. Comparative analysis with conventional PSO and PSO-reinit algorithms under various irradiance patterns demonstrates that the iPSO consistently outperforms in terms of convergence speed and MPPT efficiency. The study highlights the robustness of the iPSO algorithm in bridging theoretical models with practical applications.
Dynamic voltage restorer (DVR) in a complex voltage disturbance compensation Mansor, Muhammad Alif; Othman, Muhammad Murtadha; Musirin, Ismail; Noor, Siti Zaliha Mohammad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1103.199 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2222-2230

Abstract

Nowadays, a distribution network is operating in a stressful manner because of a complex voltage disturbance stirred by its nonlinear, intensified, sensitive and complex loading condition with vast proliferation of electronic equipment required for the integration of renewable energy. A distribution network that mostly inflicted by the complex voltage disturbance can be referred to as the merge of stationary voltage disturbances with a short duration voltage disturbance under a nonlinear loading condition. Therefore, the dynamic voltage restorer (DVR) integrating with the battery bank will have enough energy storage to overcome long and deep complex voltage disturbance that occurs in a distribution network installed with the photovoltaic (PV) system. The results are obtained with satisfactorily findings in compensating the complex voltage disturbance using DVR.
Performance comparison of artificial intelligence techniques in short term current forecasting for photovoltaic system Othman, Muhammad Murtadha; Fazil, Mohammad Fazrul Ashraf Mohd; Harun, Mohd Hafez Hilmi; Musirin, Ismail; Sulaiman, Shahril Irwan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (292.241 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2148-2156

Abstract

This paper presents artificial intelligence approach of artificial neural network (ANN) and random forest (RF) that used to perform short-term photovoltaic (PV) output current forecasting (STPCF) for the next 24-hours. The input data for ANN and RF is consists of multiple time lags of hourly solar irradiance, temperature, hour, power and current to determine the movement pattern of data that have been denoised by using wavelet decomposition. The Levenberg-Marquardt optimization technique is used as a back-propagation algorithm for ANN and the bagging based bootstrapping technique is used in the RF to improve the results of forecasting. The information of PV output current is obtained from Green Energy Research (GERC) University Technology Mara Shah Alam, Malaysia and is used as the case study in estimation of PV output current for the next 24-hours. The results have shown that both proposed techniques are able to perform forecasting of future hourly PV output current with less error.
Significant implication of unified power quality conditioner in power quality problems mitigation Hasan, Kamrul; Othman, Muhammad Murtadha; Rahman, Nor Farahaida Abdul; Hannan, M. A.; Musirin, Ismail
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (454.548 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2231-2237

Abstract

This paper presents an analysis of a three-phase unified power quality conditioner (UPQC) in terms of design and performance. A back to back connection of a series compensator and a shunt compensator with a common DC-bus is utilized to build the UPQC model. The series compensator compensates the power quality problems such as grid voltage sags/swells for the grid side. During sag and swell condition, the compensated voltage is injected by the series compensator in phase with the point of common coupling (PCC) or out of phase with PCC. The load current harmonics is compensated by using the shunt compensator. The dynamic performance and  the steady state of the designed model are analyzed by using MATLAB-Simulink under several disturbances such as PCC voltage harmonics, voltage sags/swells and load unbalancing using a nonlinear load. 
Mitigation of power quality problems using series active filter in a microgrid system Farooqi, Awais; Othman, Muhammad Murtadha; Abidin, Ahmad Farid; Sulaiman, Shahril Irwan; Radzi, Mohd Amran Mohd
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1115.912 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2245-2253

Abstract

Dynamic voltage restorer (DVR) is a series active filter device that is used to protect sensitive loads from power quality issues such as voltage sag, swell, harmonics or disturbances. This implies that the DVR is capable to mitigate power quality disturbances at load terminal. Harmonic is a major power quality problem polluting distribution network causing the end-user equipment to fail operating due to the occurrence of disturbances in voltage, current or frequency. This paper discusses on the DVR used as the proposed technique to mitigate the voltage sag and swell in a distribution network connected with energy storage system and mini-hydro turbine system.