Claim Missing Document
Check
Articles

Found 4 Documents
Search

Implementasi Knowledge Management Menggunakan Model Big Data Untuk Media Sosial UMKM Putri Permata Sari; Tulas Novalima; Eka Indah Wahyuni
Journal Of Informatics And Busisnes Vol. 2 No. 4 (2025): Januari - Maret
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jibs.v2i4.2384

Abstract

The purpose of this research is to examine the Implementation of Knowledge Management Using the Big data Model for MSME Social Media. With the rapid growth of data generated from interactions on social media, MSMEs are faced with the challenge of managing information effectively to improve competitiveness. This research uses a qualitative approach. This approach aims to explore the meaning, understanding, concepts, characteristics, symptoms, symbols, and descriptions of a phenomenon. This model describes the synergistic relationship between big data and KM and provides a framework for SMEs to use big data through KM. This framework includes four constructs, namely, strategic use of big data, knowledge-guided big data project planning, IT solutions for SMEs, and new knowledge products. Research results The implications for big data practices for different types of businesses may not be the same. Analysis of various business cases shows that successful SMEs should not ignore big data opportunities, and exploit big data by placing emphasis on KM, rather than on sophisticated IT techniques or the sheer magnitude of data, to generate knowledge products that are valuable to the competition.
Evaluasi Keandalan Infrastruktur Cloud Computing Di Politeknik Belitung Untuk Mendukung Layanan Kampus Digital Dion Anugrah; Rizki Ananda; Eka Indah Wahyuni
Journal Of Informatics And Busisnes Vol. 3 No. 1 (2025): April - Juni
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jibs.v3i1.2441

Abstract

This study evaluates the reliability of cloud computing infrastructure at Belitung Polytechnic in supporting digital campus services. The evaluation was carried out by analyzing aspects of performance, security, and scalability of the cloud-based system used. The methods applied include measuring uptime, system response, and data security against cyber threats. The results of the study indicate that the cloud computing infrastructure at Belitung Polytechnic has a fairly high level of reliability, but there are still several obstacles related to latency and security that need to be improved. Recommendations for improvement are focused on optimizing the network, improving data encryption, and implementing a stricter monitoring system. With these improvements, it is hoped that digital campus services can run more efficiently and safely, supporting academic needs and campus operations optimally.
Pengembangan Sistem Informasi Manajemen Sekolah Berbasis Web untuk Meningkatkan Efisiensi Administrasi Pendidikan Eka Indah Wahyuni; Fatimah Muthmainnah; Bintang Permana; Tulas Novalima
Uranus : Jurnal Ilmiah Teknik Elektro, Sains dan Informatika Vol. 3 No. 2 (2025): Juni : Jurnal Ilmiah Teknik Elektro, Sains dan Informatika
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/uranus.v3i2.802

Abstract

This research aims to develop a web-based school management information system that can improve the efficiency of education administration. In today's digital era, many schools face challenges in effective data and information management. This research uses a Systematic Literature Review (SLR) approach to identify and analyze relevant literature related to the development of web-based school management information systems. The results showed that the development of a web-based school management information system is generally able to improve the efficiency and effectiveness of education administration management, starting from data processing of students, teachers, finances, to reporting. The system supports transparency, speed of access and accuracy of information within the school environment. Although the results show consistent benefits, this research still has limitations in the number of sources and a relatively narrow study, so a broader and more in-depth follow-up study is needed.
ANALISIS SENTIMEN PENGGUNA TERHADAP APLIKASI GLINTS DI GOOGLE PLAY STORE MENGGUNAKAN METODE NAIVE BAYES Dinda Anggraini; Eka Indah Wahyuni
Jurnal Media Akademik (JMA) Vol. 3 No. 5 (2025): JURNAL MEDIA AKADEMIK Edisi Mei
Publisher : PT. Media Akademik Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62281/v3i5.1903

Abstract

Aplikasi pencarian kerja berbasis mobile telah menjadi alat penting bagi individu dalam mencari pekerjaan secara daring. Glints merupakan salah satu aplikasi populer di Indonesia yang menyediakan akses terhadap lowongan kerja, magang, dan pengembangan karier. Persepsi dan pengalaman pengguna terhadap kualitas aplikasi tercermin melalui ulasan yang tersedia di Google Play Store. Penelitian ini bertujuan untuk melakukan analisis sentimen pengguna terhadap aplikasi Glints, dengan mengklasifikasikan opini ke dalam kategori positif dan negatif menggunakan metode Naive Bayes. Data dikumpulkan melalui proses web scraping terhadap ulasan pengguna dalam rentang waktu November 2024 hingga April 2025. Setelah proses seleksi dan pelabelan berdasarkan skor rating, data teks diproses melalui tahapan preprocessing yang mencakup casefolding, text cleaning, text normalization, stopword removal, stemming, dan tokenizing. Representasi fitur dilakukan menggunakan metode Term Frequency–Inverse Document Frequency (TF-IDF) dengan pendekatan bigram dan nilai min_df sebesar 3. Model dikembangkan menggunakan algoritma Multinomial Naive Bayes dan dievaluasi menggunakan metrik akurasi, precision, recall, f1-score, serta confusion matrix. Hasil evaluasi menunjukkan bahwa model mencapai akurasi sebesar 87%, precision 87%, recall 87%, dan f1-score 86%. Selain itu, hasil klasifikasi menunjukkan bahwa mayoritas sentimen pengguna terhadap aplikasi Glints bersifat positif, dengan 935 ulasan positif (78,57%) dan 255 ulasan negatif (21,43%). Temuan ini menunjukkan bahwa metode Naive Bayes efektif dalam mengklasifikasikan opini pengguna dan dapat diterapkan sebagai pendekatan yang efisien dalam analisis sentimen berbasis ulasan teks.